Detecting the Abnormal: Machine Learning
in Computer Security

Terran Lane and Carla E. Brodley
School of Electrical and Computer Engineering
1285 Electrical Engineering Building
Purdue University
West Lafayette, IN 47907-1285

January 31, 1997

Keywords: Application, Learning from positive examples, Sequence learning,
Classification, Recognition, Computer security, Anomaly detection.

Contents
ABSTRACT
1 Introduction

2 Learning a User Profile
2.1 Capturing the Casual Nature of User Actions
2.2 Collecting Training Data to Form a User Profile
2.3 The Data Collection System

3 Detecting Anamolous Behavior
3.1 Computing Sequence Similarity
3.2 Classifying User Behavior

4 Experiment 1: Proof of Concept
41 The Data
4.2 System Parameters
4.3 Experimental Method o o000
44 Results.

5 Experiment 2: Instance Selection
5.1 The LRU Instance Selection Algorithm

5.2 Experimental Verification
6 Conclusions and Future Work
References

Acknowledgements

i1

= N N

-1 Ut W

16

18

20

ABSTRACT

Two problems of importance in computer security are to 1) detect the presence
of an intruder masquerading as the valid user and 2) detect the perpetration
of abusive actions on the part of an otherwise innocuous user. In this paper we
present a machine learning approach to anomaly detection, designed to han-
dle these two problems. Our system learns a user profile for each user account
and subsequently employs it to detect anomalous behavior in that account.
Based on sequences of actions (UNIX commands) of the current user’s input
stream, the system compares each fixed-length input sequence with a histor-
ical library of the account’s command sequences using a similarity measure.
The system must learn to classify current behavior as consistent or anomalous
with past behavior using only positive examples of the account’s valid user.
Our empirical results demonstrate that in most cases it is possible to distin-
guish the legitimate user from an intruder and, furthermore, that an instance
selection technique based on a memory page-replacement algorithm is capable
of drastically reducing library size without hindering detection accuracy.

Detecting the Abnormal: Machine Learning
in Computer Security

1 Introduction

A long-standing problem in the field of computer security is that of intrusion
detection [Anderson, 1980]. According to Mukherjee et al. [1994], the problem
is to identify “individuals who are using a computer system without autho-
rization (crackers) and those who have legitimate access to the system but are
abusing their privileges (the insider threat).” This problem is a subcase of the
anomaly detection problem, in which the goal is to identify anomalous situ-
ations that may cause impairment in system usability through loss of data,
denial of service, or invasion of privacy. Detecting anomalous behavior can
be viewed as a binary valued classification problem in which measurements of
system activity such as system log files, resource usage, command traces, and
audit trails are used to produce a classification of the state of the system as
normal or abnormal.

In this paper we present a machine learning approach to anomaly detection
designed to handle these two problems. Our system learns a user profile and
subsequently employs it to detect anomalous behavior. Based on sequences of
actions (UNIX commands) of the current user’s input stream, the system clas-
sifies current behavior as consistent or anomalous with past behavior. Creating
such a system presents four challenging problems:

e The definition of the class abnormal is often site or user dependent.

o If we consider the problem of learning user profiles as a concept learning
task, we face the difficulty that the profile must be formed from positive
examples only.

e There is potentially an unlimited amount of data available for user pro-

filing.

e Changes in user behavior lead to concept drift, which must also be in-
corporated into the user profile.

This paper explores how to learn a user profile and how to employ the
profile for anomaly detection. Our empirical results demonstrate that an ap-

proach based on profiling a user through characteristic sequences of commands
yields high detection accuracy.

2 Learning a User Profile

In order for the detection system to recognize anomalous behavior, it must
first form a user profile to characterize normal behavior. In this section we
describe the model underlying our approach to user profiling, and then discuss
implementation details of how user profiles are formed from command data.

2.1 Capturing the Casual Nature of User Actions

Traditionally, in computer security, user profiles have been built based on
characteristics such as resources consumed, typing rate, command issue rate,
and counts of particular commands employed [Denning, 1987, Smaha, 1988,
Frank, 1994]. It is unclear how successful these approaches have been be-
cause, although a number of applications have been fielded and are in use, to
our knowledge rigorous comparative testing has yet to be performed!. These
approaches do not use the observation that human/computer interaction is
essentially a causal process. Typically, a user has a goal to achieve when using
the computer, which causes the person to issue certain commands, causing the
computer to act in a certain manner. The computer’s response, in turn, keys
further actions on the part of the human.

To form a user profile our approach learns characteristic sequences of ac-
tions generated by users. The underlying hypothesis is that a user responds in
a similar manner to similar situations, leading to repeated sequences of actions.
Indeed, the existence of command alias mechanisms in many UNIX command
interpreters supports the idea that users tend to perform many repeated sets
of actions, and that these sequences differ on a per-user basis. It is the differ-
ences in characteristic sequences that we attempt to use to differentiate a valid
user from an intruder masquerading as that user. Note that the detection of
anomalous behavior is made more difficult because a malicious intruder may
attempt to emulate the valid user’s behavior, including alias and command
usage.

! As reported by members of the COAST security research lab. COAST is a computer
security laboratory in the Computer Science Department at Purdue University.

2.2 Collecting Training Data to Form a User Profile

To learn characteristic patterns of actions, our system uses the sequence (an
ordered, fixed-length set of temporally adjacent actions) as the fundamental
unit of comparison. For this research, actions were taken to be UNIX shell
commands with their arguments, although the approach developed here is gen-
eral and can be extended to any stream of discrete events such as operating
system calls or graphical user interface events. For ease of data collection,
the temporal order of commands was maintained only within the context of a
single command interpreter (a shell). Currently, we preserve command names
and argument switches but omit the specific file names associated with each
command execution. This decision was based on the intuition that the signif-
icant facet of the user’s command history for this work was behavior rather
than content. Thus, it should be more useful to note that the user invoked the
command emacs (a text editor) with the behavioral switch -nw (run in text-
mode rather than initialize the X-windows interface) and two file names, than
it would be to take note of the actual file names used. Clearly, for some ap-
plications of misuse detection, important information could be extracted from
the filenames (directories in which the user typically works, for example).

We envision our anomaly detection system as a personal software assistant
that helps monitor a user’s account for penetrations. Because of privacy issues,
and the fact that it is impossible to characterize the full space of user behav-
iors, only positive examples of the account owner’s behavior are available for
training.

Norton has explored sequence learning for DNA sequences [Norton, 1994],
but his data had both positive and negative training examples. The anomaly
detection domain differs from traditional concept formation tasks in that one
must characterize user behavior from “positive” examples only. To resolve this
difficulty we invoked the closed world assumption — that anything not seen in
the historical data represents a different user. Indeed, one goal of this research
was to examine the appropriateness of the closed world assumption for the
anomaly detection domain. Intuitively, it seems likely that this is a reasonable
assumption — the very terms anomaly, abnormal, and unusual imply that
divergence from past behavior is an important indication of trouble.

2.3 The Data Collection System

To collect user action data, we created a parser for the UNIX csh family of
languages (including tcsh) which translates the raw data stream of the shell
command trace into a token stream suitable for storage and comparison. This
translation suppresses filenames, as described above, but preserves command
names, argument switches?, and other syntactically important symbols such

as |, ;, and >&!. For example, the command stream:
> 1s -laF
> cd /tmp

> gunzip -c foo.tar.gz | (cd \7 ; tar xf -)
would be translated by the parser into the token stream:
1s -laF cd <1> gunzip -c <1> | (cd <1> ; tar - <1>)

where the token <1> denotes the occurrence of a single filename argument?.
The parser also introduces the tokens **S0F** and **EOF#** indicating start
and end of a command interpreter session, respectively.

During training, the processed token stream is stored verbatim in the
library. The library is an instance database that, together with a similar-
ity measure and a set of system parameters (described below), constitutes a
user’s profile. Similar to instance based learning, a design criterion is whether
one collects all available data or performs some type of instance selection
[Aha, et al., 1991, Lewis & Catlett, 1994]. We explore a strategy for instance
selection in Section 5.

3 Detecting Anamolous Behavior

Once a user profile is formed, the basic action of the detection system is to
compare incoming input sequences to the historical data and form an opinion

ZStrictly speaking, the parser depends upon the UNIX convention that argument switches
are prefixed with a dash, so the ‘~1aF’ switch in the command 1s -1aF ${HOME} would be
correctly recognized, but the switch tvf in the command tar tvf /tmp/foo.tar would not
be. This is not taken to be a serious weakness, however, as the dash convention is widely
used.

3Multiple filenames are replaced by an appropriately numbered token. For example, the
parser would emit a set of five filename arguments as <5>

as to whether or not they both represent the same user. The fundamental
unit of comparison in the anomaly detector system is the command sequence.
Dietterich and Michalski [1996] have studied the problem of learning to predict
sequences by fitting sequence data to a model from a space of possible models.
Their goal was to create a system that could predict subsequent actions in the
sequence, whereas our goal is to classify sequences of new actions as consistent
or inconsistent with sequence history. To this end, all input token streams
are segmented into overlapping sequences of tokens (where the length of each
sequence is a parameter to the system, but is fixed for a single run). Two
sequences can be compared using a similarity measure.

3.1 Computing Sequence Similarity

One approach to learning from sequence data is to convert the data into feature
vectors by accumulating measures of the individual sequences [Hirsh & Japkowicz, 1994,
Salzberg, 1995]. Then one can apply any off the shelf classifier construction
algorithm such as a neural network or a decision tree to the feature vectors
that describe the sequence data. By contrast, our approach uses a measure of
similarity between sequences to compare current input to historical data.

A number of possible methods exist for measuring the similarity of two
sequences. The most straightforward is the equality function, which yields
TRUE when both sequences match in every position and FALSE otherwise. This
is the similarity function employed by string matching algorithms and has the
advantage of being widely studied and highly optimizable. For example, the
UNIX diff program employs this form of matching. Srikant and Agrawal
[1996] use a modified equality matching function to detect frequently occuring
sequences in large data sets; they allow gaps, or intervening non-matching
elements, in their sequence detection. In our domain, the difficulty is that for
long sequences the probability of locating exact matches in historical command
data becomes exceedingly low. Thus, the equality function is not a viable
choice for this particular domain.

Our system, therefore, computes a numerical similarity measure that re-
turns a high value for pairs of sequences that it believes to have close resem-
blance, and a low value to pairs of sequences that it believes largely differ. The
individual elements of the sequences are from an unordered set, which creates
a matching problem identical to that of symbolic features for IBL. However,
unlike IBL, our similarity measure is judging the similarity between two se-

quences rather than two feature vectors. The similarity measure is based on
the intuition that token matches separated by interleaving tokens are more
likely to have occurred by chance, while adjacent matches are more likely to
have occurred due to a causal process. Therefore if sequence Seq, has k tokens
in common with each of Seq, and Seqs, but the common tokens are adjacent in
Seq, and Seq, then we would like the similarity measure to have the property
that Sim(Seq,, Seq,) > Sim(Seqq, Seqs). To this end our similarity measure
assigns similarity scores, Sim(Seq,, Seq,) as follows:

e Set an adjacency counter, ¢ := 1 and the value of the measure, Sim := 0.
e For each position, 7, in the sequence length:

— If Seq, (1) = Seq,(¢) then Sim := Sim + ¢ and increment ¢ by 1.

— Otherwise, ¢ := 1.

o After all positions are examined, return the measure value.

This measure yields a higher score for more similar sequences, bounded be-
tween 0 and n(n + 1)/2 (where n is the sequence length) and biased toward
adjacent identical tokens rather than identical tokens separated by some non-
matching intermediate tokens. We chose a polynomial upper-bound for our
sequence measure based on the observation that the elements in a command
sequence are not independent. (If they were independent then a similarity
based on a function that grows exponentially with the number of matching
tokens would make more sense.) Thus, the pair of sequences shown below on
the left would have a higher similarity value than would the pair on the right.

1s <1> ; vi 1s -1 <1> ;
1s <1> cat <3> ls -a <1> cat

We define the similarity of a single sequence Seq, to a set of sequences L as:

Sim(Seq;, L) = max {Sim(Seq,, Seq;)}

Seq] erL

Thus, the similarity of a sequence to the user library is the measure of that
sequence compared to the most similar sequence in the library.

60 T T T T T T T T T 60

50 | s0-

40 H a0

101

0

L L L L L L L L L 0 L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900
() (b)

Figure 1: Similarity measure stream. (a) Raw. (b) Smoothed.

3.2 Classifying User Behavior

Given an input stream of command tokens parsed by the data collection mod-
ule, the detection module classifies the current user as normal or anomalous
after each token. The output of the detection module is a stream of binary
decisions indicating, at each point in the input command data, whether or not
it believes that the input stream at that point was generated by the profiled
user.

To make these decisions, the detection module first calculates the similar-
ity of each input sequence to the user’s library, yielding a stream of similarity
measures. In an intuitive sense, this stream represents the familiarity of the
input commands at each time step, given knowledge about the previous behav-
ior of the user. In preliminary experiments, we discovered that the similarity
value stream produced by comparison of test data to a user profile was noisy
and erratic (see Figure 1, (a)). The noisiness of the raw similarity measure
stream can be attributed to normal deviations in actions on the parts of the
users, as well as to random elements (pre-empting work to deal with urgent
e-mail, for example). Although explainable, this variance in the similarity
measure makes it impossible to detect anomalous behavior from a single se-
quence. (The profiled user sporadically has very low similarity with their own
past behavior.)

Based on the hypothesis that, while individual sequences may deviate from

historical precedent, aggregate behavior should largely conform to historical
behavior for valid users but should still noticeably deviate for intruders, we
applied a smoothing filter to the data (see Figure 1, (b)). The smoothing
filter we applied was a windowed mean-value filter, which at sequence ¢ of the
input stream is defined by:

my (1, L) :% > Sim(Seq;, L)
J=i—w
where L is the user profile library and w is the window length.

After smoothing the similarity measure stream, the detection module makes
a classification of the input stream as being normal or abnormal at the point
occurring at the end of the current window. In the current implementation,
the classification is made with a threshold decision: if the mean-value of the
current window is greater than the threshold, classify the current window as
normal, otherwise classify it as abnormal. This threshold is a parameter of

the system and the choice of its value is discussed in the next section.

4 Experiment 1: Proof of Concept

To evaluate our approach to anomaly detection, we performed an empirical
evaluation to determine if the false positive and false negative rates of our
system were acceptable. The requirement that a security system not be in-
trusive dictates that the accuracy of an anomaly-detection system should be
very high (or, more specifically, the false negative rate — the occurrence of
misclassifications of harmless or normal actions as anomalous — should be
low). Depending on site and security policy, false alarms can disrupt the work
of system administrators or users. If the system is constantly flagging valid
users as abnormal it will quickly gain the distrust of both users and system
administrators, much in the same way that the ‘boy who cried wolf” lost the
trust of his townspeople, and that car alarms are often ignored. The level
of accuracy depends on the security policies of the site in question; a more
security-conscious site may be willing to accept a higher false alarm rate in or-
der to gain a higher rate of detections of actual system abuses. Therefore, the
detection threshold of the classification system should also be a configurable
parameter.

Convergence curves for USER3
30 T T

n N
o 3
—
(
I

cum avg similarity measure
=
(5]
T

(

0 I I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800

#tokens

Figure 2: Impact of window length on mean sequence measure

4.1 The Data

The data examined in this research were a set of UNIX* shell command his-
tories from four members of the Purdue MILLENNIUM lab, spanning a time
period of approximately four months (a little more than an academic semester).
The users varied in experience and academic histories, but all were graduate
students with considerable computer experience. Additionally, all users used
tcsh and worked extensively in the X-windows environment, which may well
have influenced the type of data patterns produced. Over the course of data
collection, we accumulated 7,769 tokens from USERO, 23,293 from USERI,
12,585 from USER2, and 22,530 from USERS3.

4.2 System Parameters

As discussed in Section 3, there are several parameters in our approach to
anomaly detection. This section describes each in detail and gives the rational
for our choices in the experiments that follow.

Sequence length: We discovered that the number of tokens per sequence had

4Sun Microsystem’s Solaris 2.5 running on Sun Ultra SPARC workstations and Linux
2.0 running on Intel 1486-based and DEC Alpha-based workstations.

10

a dramatic impact on performance. Early investigations revealed that lengths
of 5 and 15 yielded generally poor accuracy, while a length of 10 resulted
in much higher accuracy. These values suggested an experimental range for
sequence lengths of 8 to 12 tokens.

Window length: The number of sequences included in a window of obser-
vation for the testing module was set to 80 sequences (80 tokens + n tokens,
for sequence length n) based on early examinations of the windowed-mean
smoothing filter. Figure 2 displays the average window value for all window
sizes in the range [0..1750] for each user. By visual inspection we determined
that separation occurs for window lengths of approximately 80 or more se-
quences. Since the window size determines the shortest interval in which the
system can detect an intruder, we attempted to select the smallest window
that yielded discrimination. From these curves, it is clear that using this sim-
ilarity measure allows the valid user’s behavior to be discriminated from that
of other users. Unfortunately, limited data precluded independent verification
of this value (we used all four users’ data to select this window length). Since
this is likely to be a user specific parameter, future work will address how to
customize this choice to the particular user.

Classification threshold: This value was set based on initial observations
at a value of 15 for all experiments. In Figure 2, we see that after 80 tokens
thresholding at 15 discriminates that valid user from the invalid users. USER3
is the user profiled and the top curve shows the similarity measure for their
actions recorded in the test data. A single setting is crude because the upper
bound of the similarity measure varies according to the sequence length. In
future work we will investigate the sensitivity of the results to this parameter.

Library size: Initially, all available training data was allocated to the library,
but in order to examine the amount of data required to profile a user, and to
examine the possibilities of selectively pruning instances, library sizes of 50,
200, 500, 1000, and 2000 sequences were tested.

4.3 Experimental Method

We examined the performance of the base-line system across the parameters
given in Section 4.2. For the purposes of this domain, we define the detection
accuracy or true detection rate to be the number of input windows correctly
categorized as normal or abnormal (originating with the profiled user or not).

11

The data sets were divided into train (from which the user library was created)
and test at a split of 2/3 to 1/3, respectively. To obtain the desired library sizes
(50, 200, 500, 1000, and 2000 sequences), the system truncated the training
data to the desired number of sequences, keeping the oldest data (i.e. the
earliest records available for each user). In addition, we varied the length
of sequences examined from 8 to 12 tokens. For each user, library size, and
sequence length, we created a user profile sequence library and then measured
the detection accuracy for the test data from each of the four users.

4.4 Results

This experiment was intended largely as a proof-of-concept system, and as such
we were interested in answering the following questions: 1) Is the closed world
assumption appropriate for this domain? 2) What is the effect of sequence
length on detection accuracy? and 3) Is the optimal library size dependent on
user?

Closed world assumption: A central hypothesis of our anomaly detection
system is that user patterns are sufficiently consistent, for a single user, yet
sufficiently disparate, when measured between users, that differentiation is
possible. In this experiment we show that differentiation is, in fact, possible
within the scope of our test data. Table 1 displays the detection results for
all pairwise tests of user profiles and users with sequence length of 12 and a
library size of 2000 sequences. Recall that the test data sets are 1/3 of the
total user data, as given in Section 4.1.

The user from whom the profile was generated is listed in the leftmost
column, while the user from whom the test data was generated is listed across
the topmost row. The numbers in the table are percentages of windows that the
detection system identified as the profiled user. Ideally, the diagonal elements
of the table (true positive rates) should be 100% and the off-diagonal elements
(false positive rates) should be 0%.

These results demonstrate that the recognition system has higher true pos-
itive than false positive rates. Furthermore, in some cases (USERI tested
against USERO and USER2 tested against USERI, for example), the false
negative rate is lower than the false positive rate. This is a desirable charac-
teristic as false negatives make the system less usable (due to the annoyance of
false alarms). We take these results as evidence that the closed world assump-
tion is appropriate for at least some users in this domain, although we note

12

Profiled Tested User

User USERO ‘ USER1 ‘ USER2 ‘ USER3
USERO 99.19 35.35 6.113 0.000
USER1 17.84 88.30 23.32 1.251
USER2 3.519 54.86 72.10 8.292
USER3 6.270 15.74 11.52 69.85

Table 1: All users tested against all profiles

[50 [200 [500] 1000 | 2000 |

8 [129]48 |62.2]91.7 |96.0
9 [52]65 | 781972 |97.7
10 | 5.7 | 11.1 | 85.4 | 97.8 | 98.5
11] 8.0 [15.2 | 88.9 | 98.5 | 98.9
12 11 9.7 119.2] 92.1 | 98.8 | 99.2

Table 2: USERO0’s test data tested against USERO0’s profile

that the users involved in this study are all fairly to extremely experienced
computer users. The question of whether or not the techniques presented here
would apply equally well to novice users is still open.

The effect of sequence length on detection accuracy: Our experiments
were designed to examine the impact of sequence length on detection rate, as
well as the question of whether optimal sequence length is user dependent.
For brevity, the full set of experimental results is omitted here, but Table 2
displays some typical trends. The numbers in this table are percentages of
the input stream identified as USERO input (equivalent to detection accuracy
for this case). The column headings are library size and the row headings are
sequence length.

A positive relation between sequence length and detection rate is seen over
the range of sequences examined in this experiment. As mentioned earlier,
this trend reverses at longer sequence lengths. We also noted that the false
positive rate increases (erroneously classifying normal behavior as anomalous)
when the sequence length increases.

Note that the sequence length has the most dramatic impact for a library

13

y | 200 [500 | 1000 | 2000 | | | 200 | 500 [1000 | 2000 |
| SELF [[19.1] 92.1] 98.8] 99.2] |SELF [46.0 | 74.4 | 82.6 | 83.3 |
USERI [| 9.0]12.90 [27.6 [354] [USERO [0.0] 74[12.0] 178
USER2 || 00| 00| 20| 6.1] |USER2| 4.7]10.1 [15.6 | 23.3
USER3 || 00| 00| 00| 00| [USER3| 00| 1.0] 1.0] 13
(@) (b)
| [200 [500 [1000 [2000 | | [200 [500 [1000 [2000 |
| SELF | 4.6 [21.7] 55.0 | 72.1 | [SELF [14.3 |36.9 [55.3 | 69.8 |
USERO [0.0] 1.5] 28] 35| [USERO| 14] 18] 29] 6.3
USERI || 83224 46.1 [549 [USERL| 05] 24 6.1][157
USER3 | 0.0] 02| 1.4[83| [USER2| 00| 21| 5.6 11.5

() (d)

Table 3: Profiled users (SELF) versus all other users for various library sizes.

size of 500 sequences for this user, and, simultaneously, the library size of 500
sequences represents a dramatic accuracy improvement over a library size of
200 sequences. When we examined the usage patterns for the library elements,
we found that, even when the library size is unrestricted, only 850 library se-
quences are ever selected as ‘most similar’ to an input sequence. It is probable
that, for this user, most of the behavioral information is contained in a few
characteristic sequences. This led us to explore the effect of library size on
accuracy.

Optimal library size: The observation that much information is contained
in relatively few instances for USERO leads to the question of whether optimal
library size is invariant of the user profiled. Tables 3 (a)-(d) suggest that ideal
library size is user specific. In these tables, the column headings indicate the
size of the library used in the user profile, while the row headings indicate the
test set under examination. ‘SELF’ denotes a test of the user’s data against
that same user’s profile. The numbers in the table are percentages of the
input stream detected as the same as the profile. Thus, the ideal values for
the ‘SELF’ row are 100% and the ideal values for other rows are 0%.

It appears that, while for USERO most of the important behavioral data
is extracted within 500 sequences, for USER3 significant information is still

being acquired by the 1000 and 2000 sequence points. USER2 and USER3’s

14

accuracies do not appear to asymptote on this range of sequences. There are a
two possible explanations for this behavior. The first is that users 1, 2, and 3
are also characterized by a small number of sequences, but that those sequences
occur infrequently, and thus require a larger sample to acquire. Under this
hypothesis, it is possible that a single library size is applicable to all users,
and that the important sequences occurred early for USER0O more-or-less by
chance. Alternatively, it is possible that different library sizes are necessary
for superior performance for different users. This issue is complicated by the
result that the false positive rate seems to increase with increasing library size;
it is desirable to maintain the smallest acceptable library for accuracy as well
as resource reasons.

5 Experiment 2: Instance Selection

The amount of data that is available for examination on a per-user basis is
potentially staggering. If the granularity of examination is reduced to the
level of individual operating system calls, the data stream could well amount
to thousands, or even millions, of data per second. If the anomaly-detection
system is to run real-time then it is imperative that the system be both fast
and resource conservative (history has shown that a security measure that is
sufficiently obtrusive will not actually be used, and will, therefore, be useless.)
This implies that much of the available data must be discarded with little or
no examination.

5.1 The LRU Instance Selection Algorithm

The experiments reported in Section 4 provided evidence that optimal library
size is user dependent. This suggests that a gain in resource efficiency can be
made by discarding some historical command data. The hypothesis that some
sequences are more characteristic of a user’s behavior than others suggests
a possible strategy for deleting unnecessary sequences. We note, first, that
the algorithm employed in the first experiment selects only a single historical
sequence as most similar to a given input sequence. If we assume that the
characteristics of a user’s behavior change relatively slowly, we can invoke
locality of reference to predict that recently matched library sequences will be
used again for detection in the near future. This suggests an analogy to tasks in
operating systems, such as page replacement, in which some resources must be

15

discarded in favor of others. To examine this analogy, we modified the anomaly
detection system from Experiment 1 to employ the least-recently-used (LRU)
discard strategy. Under this strategy, a set of pruning sequences (separate
from both train and test sequences) are selected and used to mark which
sequences in the library are used for detection. As each pruning sequence is
examined, the library instance selected as most similar is time-stamped. After
all pruning data is processed, the library is reduced to the desired size by
removing the least-recently-used sequences. The resulting pruned library is
then employed as the user profile to classify input streams. Strictly speaking,
LRU is an iterative algorithm, while our implementation for these experiments
was batch mode.

5.2 Experimental Verification

The experimental runs described in Section 4 were repeated, with the ex-
ceptions that 1) library size was achieved with the LRU instance selection
algorithm rather than library truncation and that 2) of the 1/3 of user data
reserved for testing, only 1000 sequences were used as test data for each user,
the rest being employed as pruning data. Characteristic results are given in
Tables 4 (a)-(d). The format of these tables is identical to the format of
Tables 3 (a)-(d).

For USER2 and USERS3, these results display a dramatic increase in true
detection rate, accompanied by a decrease in false positive rate. USERO, on
the other hand, experiences a slight drop in true positive rate for large library
sizes, along with increases in false negative rate in some cases. There are two
noteworthy features of USERO’s results. The first is that the true detection
rate (the SELF rate) for a library size of 200 elements is much greater than
for the equivalent entry in Table 3 (improved by 50 percentage points). This
suggests that the LRU pruning algorithm can be useful even for this user. It
also suggests, however, that the LRU selection technique might asymptote at
lower accuracies for the other users as well, if the experiments were extended to
cover larger library sizes. The second interesting factor in Table 4 for USERO is
that, while false positive rates increased with respect to USERI1, they declined
or remained constant with respect to USER2 and USER3. This raises the
possibility that the optimal instance selection scheme is not merely a function
of the user being profiled, but also of the intruder.

16

y | 200 | 500 | 1000 | 2000 | | | 200 [500 | 1000 | 2000 |
| SELF [69.4 [86.8 | 90.7 | 93.4 | [SELF [28.3]89.8 [100.0 | 100.0
USERI [13.3 [37.6 | 46.7 [50.9 | [USERO || 2.1 | 154 | 258 | 36.7
USER2 | 0.0 0.0 0.0[0.0| [USER2| 00| 1.3| 81| 11.4
USER3 | 0.0 0.0] 0.0[0.0] [USER3[00| 0.0] 0.0[0.0
(@) (b)
| | 200 | 500 | 1000 | 2000 | | [200 [500] 1000 | 2000 |
| SELF [[10.7 | 47.1 | 70.1 [95.0 | | SELF [32.3]69.9 | 80.4 | 89.8 |
USERO | 22| 3.1 34]106] [USERO] 0.0] 1.2] 29] 59
USERL || 1.8 [16.0 [42.8 [60.1 | [USERL | 0.0 0.0 0.0 0.2
USER3 | 0.0 0.0[0.0[09| [USER2] 0.0] 0.0 32[3.6
(c) (d)

Table 4: Results of LRU instance selection.

6 Conclusions and Future Work

This research has demonstrated a number of points. The first is that sequence
learning can be a valuable technique in the domain of anomaly detection for
user recognition in computer security. The experiments have provided empir-
ical evidence that the optimal library size is a function of the profiled user
and further that an instance selection system can lead to increased perfor-
mance. We found that the least-recently-used instance selection technique
yields substantial performance benefits for some users in our test sets, but
not universally. This points the way toward investigation of other instance
selection techniques for the security anomaly detection domain.

There are a number of directions available at this point for future research.
It is possible that greater accuracy can be achieved by replacing the mean-value
smoothing operation (Section 3.1) with a different noise-suppression algorithm.
Similarly, it might be beneficial to apply a more sophisticated discrimination
test than comparison to a constant threshold value (see Section 3.2). In future
research we will investigate methods for setting the value of the window length
and the detection threshold, on a per-user basis, by examining statistics of the
user’s smoothed input sequence and setting the threshold in accordance with
a pre-selected false negative tolerance level. In addition we plan to investigate
alternative instance selection methods.

17

One potential problem that this research has not addressed is, that as time
passes, normal user actions will change — they will use different applications or
read the UNIX manual. This means that some of the old sequence data will
no longer accurately reflect the user’s behavior. To handle this concept drift
[Schlimmer, 1987] a method is needed to remove out-of-date data sequences
from the library similar to removing instances from instance-based learning
systems [Moore, 1990]. Fortunately, these sequences can be detected as they
are older and will not have been recently used in matching (new behavior
looks different). A focus of future work will be to explore the LRU method for
adapting user-profiles to concept drift.

18

References

[Aha, et al., 1991] Aha, D., Kibler, D., & Albert, M. (1991). Instance-based
learning algorithms. Machine Learning, 6, 37-66.

[Anderson, 1980] Anderson, J. P. (1980). Computer security threat monitoring

and surveillance, (Technical Report), Washington, PA, James P. Anderson
Co.

[Denning, 1987] Denning, D. E. (1987). An intrusion-detection model. I[EEFE
Transactions on Software Engineering, 13, 222-232.

[Dietterich & Michalski, 1986] Dietterich, T. G. , & Michalski, R. S. (1986).
Learning to predict sequences. In Michalski, Carbonell & Mitchell (Eds.),
Machine learning: An artificial intelligence approach. San Mateo, CA: Mor-
gan Kaufmann.

[Frank, 1994] Frank, J. (1994). Machine learning and intrusion detection: Cur-
rent and future directions. Proc. of the 17th National Computer Security
Conference.

[Hirsh & Japkowicz, 1994] Hirsh, H., & Japkowicz, N. (1994). Bootstrapping
training-data representations for inductive learning: A case study in molec-
ular biology. Proceedings of the Twelfth National Conference on Artificial
Intelligence (pp. 639-644). Seattle, WA.

[Lewis & Catlett, 1994] Lewis, D., & Catlett, J. (1994). Heterogeneous uncer-
tainty sampling for supervised learning. Machine Learning: Proceedings of
the FEleventh International Conference (pp. 148-156). New Brunswick, NJ:
Morgan Kaufmann.

[Moore, 1990] Moore, A. W. (1990). Aquisition of dynamic control knowledge
for a robot manipulator. Proceedings of the Seventh International Confer-
ence on Machine Learning (pp. 244-252). Austin, TX: Morgan Kaufmann.

[Mukherjee, et al., 1994. | Mukherjee, B., Heberlein, L. T. | & Levitt, K. N.
(1994.). Network intrusion detection. IEEFE Network, 8, 26-41.

[Norton, 1994] Norton, S. W. (1994). Learning to recognize promoter se-
quences in E. coli by modelling uncertainty in the training data. Proceedings

19

of the Twelfth National Conference on Artificial Intelligence (pp. 657-663).
Seattle, WA.

[Salzberg, 1995] Salzbery, S. (1995) Locating Protein Coding Regions in Hu-
man DNA using a Decision Tree Algorithm. Journal of Computational Bi-
ology, 2(3), 473-485.

[Schlimmer, 1987] Schlimmer, J. C. (1987). Concept acquisition through rep-
resentational adjustment. Doctoral dissertation, University of California,
Irvine.

[Smaha, 1988] Smaha, S. E. (1988). Haystack: An intrusion detection sys-
tem. Proceedings of the Fourth Aerospace Computer Security Applications
Conference (pp. 37-44).

[Srikant & Agrawal, 1996] Srikant, R., & Agrawal, R. (1996). Mining sequen-
tial patterns: Generalizations and performance improvements, . Proc. of the
Fifth Int’l Conference on Fxtending Database Technology (EDBT). Avignon,

France.

20

Acknowledgments:

We would like to thank Tim Stough, Gene Spaford, Ronny Kohavi, Paul Ut-
goff, and Craig Codrington for their helpful comments. We are also grateful
to the members of the Purdue MILLENNIUM Lab for their contributions of
data and insight to this work. A portion of this research was funded by the
commercial and government sponsors and supporters of the COAST Labora-
tory: Cisco Systems, HP, Schlumberger, MITRE, Sprint, Sun Microsystems,
Hughes Research Laboratories, Thompson Consumer Electronics, and the U.S.
Department of Defense.

