
CLASSIFICATION AND DETECTION OF COMPUTER INTRUSIONS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Sandeep Kumar

In Partial Ful�llment of the

Requirements for the Degree

of

Doctor of Philosophy

August 1995

ii

This thesis is dedicated to my parents, and to Bharati.

iii

ACKNOWLEDGMENTS

I would like to sincerely thank two people who have been instrumental in my ob-

taining a Ph.D. My wife Bharati, who got me started when the inertia and apprehen-

sion of a long-term commitment seemed insurmountable, and my advisor Dr. Eugene

Spa�ord, for his encouragement and sagesse on several occasions when the temptation

to throw it all away seemed too strong.

The COAST laboratory in which I worked provided a stimulating, benign and

encouraging environment for the discussion of semi-baked ideas. There I �rmly un-

derstood that mutual cooperation can serve as a catalyst to high-quality work and

that the time demands thus placed on individuals are well worth it. Thanks to all

its members, former and current: Taimur Aslam, Mark Crosbie, Bryn Dole, Ivan Kr-

sul, Steve Lodin, Christoph Schuba, and Frank Wang. Special thanks to Christoph

for proofreading most of my writing and giving very valuable technical and stylistic

consistency feedback.

Discussions and guidance frommy committeemembers Dr. John Korb, Dr. Samuel

Wagsta� and Dr. Michal Young were very valuable. They continually steered me to

the cause of \science" when I seemed hopelessly lost in the \engineering" aspect of

things. Dr. Mikhail Atallah was extremely helpful in proof-reading one of my earlier

reports and for pointing out that one of my theoretical observations had already been

published elsewhere.

The Computer Science department of the University of California, Davis was very

helpful in providing me with a facility to generate stable audit trails, without which it

would have been di�cult to conduct my experiments. Many thanks go to Dr. Matthew

Bishop and to Christopher Wee, who championed my cause with their administrative

sta�.

iv

The facilities sta� at the Computer Sciences department at Purdue deserve special

mention. In addition to the fundamental sustenance they provide to the department

by keeping the hardware and software \well tuned," \well oiled," and up-to-date, they

have been extremely prompt and cheerful while su�ering through the innumerable

queries that I have put to them in the course of my half decade of stay in West

Lafayette.

This work was supported, in part, by: Department of Defense contract MDA

904-93-C-4081; by gifts from Sun Microsystems, Bell Northern Research, and Hughes

Research Laboratories; equipment loaned to the COAST group by the U.S. Air Force;

and a contract with Trident Data Systems. This support is gratefully acknowledged.

DISCARD THIS PAGE

v

TABLE OF CONTENTS

Page

LIST OF FIGURES : viii

LIST OF TABLES : x

ABSTRACT : xi

1. INTRODUCTION : 1

1.1 Computer Security and its Role : 1
1.2 What is Intrusion Detection? : 5

1.2.1 Premise and Limitations of Intrusion Detection : : : : : : : : 7
1.3 Terminology : 9
1.4 A Note on the Use of Examples : 12
1.5 Thesis Statement and Outline : 13
1.6 Summary : 14

2. RELATED WORK IN INTRUSION DETECTION : : : : : : : : : : : : : 15

2.1 Introduction : 15
2.2 Anomaly Intrusion Detection : 16

2.2.1 Statistical Approaches : 16
2.2.2 Feature Selection : 18
2.2.3 Combining Individual AnomalyMeasures to Get a Single Measure 19
2.2.4 Predictive Pattern Generation : : : : : : : : : : : : : : : : : : 22
2.2.5 Neural Networks : 23
2.2.6 Bayesian Classi�cation : 25

2.3 Misuse Intrusion Detection : 26
2.3.1 Using Conditional Probability to Predict Misuse Intrusions : : 26
2.3.2 Production/Expert Systems in Intrusion Detection : : : : : : 27
2.3.3 State Transition Analysis : 29
2.3.4 Keystroke Monitoring : 29
2.3.5 Model-Based Intrusion Detection : : : : : : : : : : : : : : : : 29

vi

Page

2.4 A Generic Intrusion Detection Model : : : : : : : : : : : : : : : : : : 31
2.5 Shortcomings of Current Intrusion Detection Systems : : : : : : : : : 33
2.6 Summary of Intrusion Detection Techniques : : : : : : : : : : : : : : 36

3. A SCHEME FOR CLASSIFYING INTRUSION SIGNATURES : : : : : : 38

3.1 A Hierarchy of Intrusion Signatures : : : : : : : : : : : : : : : : : : : 39
3.1.1 Classify Vulnerabilities or Signatures? : : : : : : : : : : : : : : 40
3.1.2 Our Classi�cation : 41
3.1.3 Relevance of this Classi�cation : : : : : : : : : : : : : : : : : 49

3.2 Intrusion Detection as Pattern Matching : : : : : : : : : : : : : : : : 49
3.2.1 Intrusion Signatures as Patterns to be Matched : : : : : : : : 50
3.2.2 The Nature of Intrusion Signatures : : : : : : : : : : : : : : : 52
3.2.3 System and Other Considerations : : : : : : : : : : : : : : : : 57
3.2.4 Further Advantages of a Pattern Matching Approach : : : : : 58
3.2.5 Disadvantages of a Pattern Matching Approach : : : : : : : : 60

3.3 Summary : 61

4. A MODEL INSTANTIATION : 63

4.1 The Model : 63
4.2 An Example Simulation : 68

4.2.1 The Semantics of Invariants : : : : : : : : : : : : : : : : : : : 70
4.2.2 CPA Variable Semantics : 71
4.2.3 Partial Order or AND Matching Semantics : : : : : : : : : : : 71

4.3 Formal De�nition of a CPA : 71
4.4 Realizing the Intrusion Classi�cation in this Model : : : : : : : : : : 75
4.5 Comparison with Other Models of Matching : : : : : : : : : : : : : : 79
4.6 Summary : 81

5. THEORETICAL PROPERTIES OF THE MATCHING MODEL : : : : : 82

5.1 Complexity of Matching : 82
5.2 Some Engineering Solutions that Improve Matching : : : : : : : : : : 85
5.3 Common Subexpression Elimination in Guards : : : : : : : : : : : : : 88

5.3.1 Compilation of 1a : 90
5.3.2 Compilation of 2a : 92

5.4 Summary : 99

6. IMPLEMENTATION ARCHITECTURE OF THE MODEL AND SIMU-
LATION RESULTS : 101

6.1 Introduction : 101

vii

Page

6.2 Approach : 103
6.3 Overall Architecture : 104

6.3.1 Application Structure : 105
6.3.2 Event Structure : 109
6.3.3 Server Structure : 110
6.3.4 Summary : 111

6.4 Building the Server : 112
6.4.1 Server::parse() : 112
6.4.2 Pseudo-code for the Generated PatProc : : : : : : : : : : : : 113

6.5 Design Choices : 114
6.6 Performance : 116

6.6.1 Timing Results : 116
6.6.2 Space Requirements : 120

6.7 Summary : 122

7. SUMMARY, CONCLUSIONS AND FUTURE WORK : : : : : : : : : : : 123

7.1 Experiences : 124
7.1.1 Using Pattern Matching for Intrusion Detection : : : : : : : : 124
7.1.2 Writing Intrusion Patterns : 125
7.1.3 Using Audit Trails : 126

7.2 Future Work : 126
7.2.1 Optimize the Current Implementation. : : : : : : : : : : : : : 126
7.2.2 Add Other Features To The Implementation. : : : : : : : : : : 128
7.2.3 Apply the Pattern Matching Approach to Other Problems. : : 128

7.3 Conclusions : 129

BIBLIOGRAPHY : 131

APPENDIX SOME EXAMPLE INTRUSION PATTERNS : : : : : : : : : 139

VITA : 165

viii

LIST OF FIGURES

Figure Page

2.1 A Trivial Bayesian Network Modeling Intrusive Activity : : : : : : : : : 21

2.2 A Conceptual Use of Neural Nets in Intrusion Detection : : : : : : : : : 24

2.3 A Generic Intrusion Detection Model : 33

3.1 A Race Condition Attack Represented as a Sequence Pattern : : : : : : 45

3.2 The Abstract Signature Classi�cation Hierarchy : : : : : : : : : : : : : : 48

3.3 Monitoring Clarke-Wilson Triples as a Pattern Match : : : : : : : : : : 53

3.4 Three Failed Login Attempts as a Signature : : : : : : : : : : : : : : : : 53

4.1 Representing Synchronization of Events : : : : : : : : : : : : : : : : : : 65

4.2 Simulation of a Pattern That Does Not Use Guard Expressions or Token
Local Variables : 68

4.3 A Sequence Pattern of Read Followed by Write : : : : : : : : : : : : : : 76

4.4 A Simli�ed Pattern to Detect Unauthorized Transitions to Root : : : : : 78

5.1 A Pattern with Monotonic Guard Expressions : : : : : : : : : : : : : : : 86

5.2 A General Pattern with Monotonic Guard Expressions : : : : : : : : : : 87

5.3 A Timing Attack Involving Setid Shell Scripts : : : : : : : : : : : : : : : 89

5.4 Exploiting Setid Shell Scripts : 89

6.1 Matching a TCP Connection : 105

6.2 An Example Application : 107

6.3 Server Structure : 110

ix

Figure Page

6.4 Interrelationship Among the Various Classes in the Detector : : : : : : : 111

6.5 Pseudo-code of a Sample PatProc : 114

6.6 Time for Matching Each Pattern for a 400K Audit File : : : : : : : : : : 117

6.7 Time for Matching Multiple Patterns for a 400K Audit File : : : : : : : 118

6.8 The size in KB of Each Compiled Pattern : : : : : : : : : : : : : : : : : 121

x

LIST OF TABLES

Table Page

4.1 Non-deterministic Matching of a CPA : : : : : : : : : : : : : : : : : : : 69

4.2 Deterministic Matching of a CPA : 70

6.1 Extrapolating Timing Results to Match 100 Patterns : : : : : : : : : : : 119

xi

ABSTRACT

Kumar, Sandeep. Ph.D., Purdue University, August 1995. Classi�cation and Detec-
tion of Computer Intrusions. Major Professor: Eugene H. Spa�ord.

Some computer security breaches cannot be prevented using access and informa-

tion
ow control techniques. These breaches may be a consequence of system software

bugs, hardware or software failures, incorrect system administration procedures, or

failure of the system authentication module. Intrusion detection techniques can have

a signi�cant role in the detection of computer abuse in such cases.

This dissertation describes a pattern matching approach to representing and de-

tecting intrusions, a hitherto untried approach in this �eld. We have classi�ed intru-

sions on the basis of structural interrelationships among observable system events.

The classi�cation formalizes detection of speci�c exploitations by examining their

manifestations in the system event trace. Thus, we can talk about intrusion signa-

tures belonging to particular categories in the classi�cation, instead of vulnerabilities

that result in intrusions.

The classi�cation developed in this dissertation can also be used for developing

computational models to detect intrusions in each category by exploiting the common

structural interrelationships of events comprising the signatures in that category. We

can then look at signatures of interest that can be matched e�ciently, instead of

attempting to devise a comprehensive set of techniques to detect any violation of

the security policy. We de�ne and justify a computational model in which intrusions

from our classi�cation can be represented and matched. We also present experimental

results based on an implementation of the model tested against real-world intrusions.

1

1. INTRODUCTION

In this chapter we motivate the need for securing computer systems and discuss

the role of intrusion detection in their security. We give a broad overview of the

�eld of intrusion detection as it is presented in the literature. In the next chapter we

survey approaches that have been taken in other systems for detecting intrusions.

1.1 Computer Security and its Role

One broad de�nition of a secure computer system is given by Gar�nkel and Spaf-

ford [GS91] as one that can be depended upon to behave as it is expected to. The

dependence on the expected behavior being the same as exhibited behavior is re-

ferred to as trust in the security of the computer system. The level of trust indicates

the con�dence in the expected behavior of the computer system. The expected be-

havior is formalized into the security policy of the computer system and governs the

goals that the system must meet. This policy may include functionality requirements

if they are necessary for the e�ective functioning of the computer system.

A narrower de�nition of computer security is based on the realization of con�-

dentiality, integrity, and availability in a computer system [RS91]. Con�dentiality

requires that information be accessible only to those authorized for it, integrity re-

quires that information remain unaltered by accidents or malicious attempts, and

availability means that the computer system remains working without degradation of

access and provides resources to authorized users when they need it. By this de�ni-

tion, an unreliable computer system is unsecure if availability is part of its security

requirements.

A secure computer system protects its data and resources from unauthorized ac-

cess, tampering, and denial of use. Con�dentiality of data may be important to the

2

commercial success or survival of a corporation, data integrity may be important to

a hospital that maintains medical histories of patients and uses it to make life critical

decisions, and data availability may be necessary for real-time tra�c control.

There is a close relationship between the functional correctness of a computer sys-

tem and its security. Functional correctness implies that a computer system meets its

speci�cations. If the functionality speci�cation includes security policy requirements,

then functional correctness implies security of the computer system. However, the

reverse is not true, i.e., functional error may not result in violations of the security pol-

icy, especially as it relates to con�dentiality, integrity, and availability. For example,

an operating system service call may not process all valid arguments to it correctly,

yet it may not be possible to violate the security policy by taking advantage of this

fact. As another example, consider a visual (WYSIWYG) word processing program

that fails to highlight user selections on the display. The program is likely not func-

tionally correct, but this behavior may not cause a violation of the system security

policy.

Threats to Security

As a society we are becoming increasingly dependent on the rapid access and

processing of information. As this demand has increased, more information is being

stored on computers. The increased use of computers has made rapid tabulation of

data from di�erent sources possible. Correlation of information from di�erent sources

has allowed additional information to be inferred that may be di�cult to obtain

directly. The proliferation of inexpensive computers and of computer networks has

exacerbated the problem of unauthorized access and tampering with data. Increased

connectivity not only provides access to larger and varied resources of data more

quickly than ever before, it also provides an access path to the data from virtually

anywhere on the network [Pow95]. In many cases, such as the Internet worm attack

of 1988 [Spa89], network intruders have easily overcome the password authentication

mechanisms designed to protect systems.

3

With an increased understanding of how systems work, intruders have become

skilled at determining weaknesses in systems and exploiting them to obtain such

increased privileges that they can do anything on the system. Intruders also use

patterns of intrusion that are di�cult to trace and identify. They frequently use

several levels of indirection before breaking into target systems and rarely indulge in

sudden bursts of suspicious or anomalous activity. They also cover their tracks so

that their activity on the penetrated system is not easily discovered1.

Threats such as viruses [Coh87] and worms [SH82] do not need human super-

vision and are capable of replicating and traveling to connected computer systems.

Unleashed at one computer, by the time they are discovered it may be impossible to

trace their origin or the extent of infection. Then there may be threats from trojan

horses which do not replicate but are programmed to unleash destructive activity on

a precondition compiled into the program [Tho87].

Detecting these Threats

Most computer systems provide an access control mechanism as their �rst line

of defense [Lam69, Lam71]. However, this only limits whether access to an object

in the system is permitted but does not model or restrict what a subject may do

with the object itself if it has the access to manipulate it [Den82]. Access control

therefore does not model and cannot prevent unauthorized information
ow through

the system because such
ow can take place with authorized accesses to the objects.

Moreover, in systems where access controls are discretionary, the responsibility of

protecting data rests on the end user. This often requires that users understand the

protection mechanisms o�ered by the systems and how to achieve the desired security

using these mechanisms.

Information
ow can be controlled to enhance security by applying models such

as the Bell and LaPadula model [BL73] to provide secrecy, or the Biba model [Bib77]

1For an account of a real intrusion that originated in Europe and targeted several military com-
puters in the U.S. see the book by Cli� Stoll [Sto88].

4

to provide integrity. However, security comes at the expense of convenience. Both

models are conservative and restrict read and write operations to ensure that con�-

dentiality and integrity of data in the system cannot be compromised. If both models

are jointly used, the resulting model only permits accesses to objects at the same

security classi�cation level as the subject. Thus, a completely secure system may not

be very useful.

Access controls and protection models are not helpful against insider threats or

compromise of the authentication module. If a password is weak and is compromised,

access control measures cannot prevent the loss or corruption of information that the

compromised user was authorized to access. In general, static methods of assuring

security properties in a system may simply be insu�cient, or make the system overly

restrictive to its users. For example, static techniques may not be able to prevent

violation of security policy that results from browsing of data �les; and mandatory

access controls [oDS85] that only permit users access to data for which they have

appropriate clearance make the system cumbersome to use. A dynamic method, such

as behavior tracking, is therefore needed to detect and perhaps prevent breaches in

security.

The di�culties in engineering complex, bug-free software are unlikely to be re-

solved in the near future. Faults in system software are often manifested as security

weaknesses. Moreover, software life cycle times are being continually shortened be-

cause of increased market competitiveness. This often results in poor designs or

inadequate testing, further aggravating the problem.

Computer systems are therefore likely to remain unsecure for some time to come.

We must have measures in place to detect security breaches, i.e., identify intruders

and intrusions. Intrusion detection systems �ll this role and usually form the last line

of defense in the overall protection scheme of a computer system. They are useful

not only in detecting successful breaches of security, but also in monitoring attempts

to breach security, which provides important information for timely countermeasures.

Thus, intrusion detection systems are useful even when strong preventive steps taken

5

to protect computer systems place a high degree of con�dence in their security. Fur-

thermore, preventive steps such as repairs of system software faults may not always

be preferable to detection of their exploitation from a practical cost-bene�t consid-

eration. Fixing bugs may not be possible without the software source and requisite

expertise, and large scale deployment of patches may require more cumbersome in-

stallation procedures than updating the intrusion detection database, especially when

software is customized for local use at individual sites. In the case of large, complex

programs, such as sendmail, it may not be possible to \�x" all its possible
aws

even when its source code is available. Monitoring generic methods of exploiting

vulnerabilities can be very useful in such cases.

1.2 What is Intrusion Detection?

An intrusion is de�ned by Heady et al. [HLMS90] as

any set of actions that attempt to compromise the integrity, con�dential-

ity, or availability of a resource.

An earlier study done by Anderson [And80] uses the term \threat" in this same sense

and de�nes it to be

the potential possibility of a deliberate unauthorized attempt to

access information,

manipulate information, or

render a system unreliable or unusable.

An intrusion is a violation of the security policy of the system. The de�nitions above

are general enough to encompass all the threats mentioned in the previous section.

Any de�nition of intrusion is, of necessity, imprecise, as security policy requirements

do not always translate into a well-de�ned set of actions. Whereas policy de�nes

the goals that must be satis�ed in a system, detecting breaches of policy requires

knowledge of steps or actions that may result in its violation.

6

Detecting intrusions can be divided into two categories: anomaly intrusion detec-

tion andmisuse intrusion detection. The �rst refers to intrusions that can be detected

based on anomalous behavior and use of computer resources. For example, if user X

only uses the computer from his o�ce between 9 AM and 5 PM, an activity on his

account late in the night is anomalous and hence, might be an intrusion. Another user

Y might always login outside working hours through the company terminal server. A

late night remote login session from another host to his account might be considered

unusual. Anomaly detection attempts to quantify the usual or acceptable behavior

and
ags other irregular behavior as potentially intrusive.

One of the earliest reports that outlines how intrusions may be detected by iden-

tifying \abnormal" behavior is the work by Anderson [And80]. In his in
uential

report, Anderson presents a threat model that classi�es threats as external penetra-

tions, internal penetrations, and misfeasance and uses this classi�cation to develop

a security monitoring surveillance system based on detecting anomalies in user be-

havior. External penetrations are de�ned as intrusions that are carried out by unau-

thorized computer system users; internal penetrations are those that are carried out

by authorized users of computer systems who are not authorized for the data that

is compromised; and misfeasance is de�ned as misuse of authorized data and other

resources by otherwise authorized users.

In contrast, misuse intrusion detection refers to intrusions that follow well-de�ned

patterns of attack that exploit weaknesses in system and application software. Such

patterns can be precisely written in advance. For example, exploitation of the

fingerd and sendmail bugs used in the Internet Worm attack [Spa89] would come

under this category. This technique represents knowledge about bad or unacceptable

behavior [Sma92] and seeks to detect it directly, as opposed to anomaly intrusion

detection, which seeks to detect the complement of normal behavior.

The above mentioned schemes of classifying intrusions are based on their method

of detection. Another classi�cation scheme, based on intrusion types, presented by

Smaha [Sma88] classi�es intrusions into the following six types:

7

Attempted break-in: often detected by atypical behavior pro�les or violations of se-

curity constraints.

Masquerade attack: often detected by atypical behavior pro�les or violations of secu-

rity constraints.

Penetration of the security control system: usually detected by monitoring for spe-

ci�c patterns of activity.

Leakage: often detected by atypical usage of I/O resources.

Denial of Service: often detected by atypical usage of system resources.

Malicious use: often detected by atypical behavior pro�les, violations of security con-

straints, or use of special privileges.

This classi�cation provides a grouping of intrusions based on the end e�ect and the

method of carrying out the intrusions. Irrespective of how intrusions are classi�ed,

the main techniques for detecting them are the same: the statistical approach of

anomaly detection, and the precise monitoring of well-known attacks in the misuse

detection approach. Both approaches make implicit assumptions about the nature of

intrusions that can be detected by them.

1.2.1 Premise and Limitations of Intrusion Detection

Anomaly Detection

The central premise of anomaly intrusion detection is that intrusive activity is

a subset of anomalous activity. This might seem reasonable, considering that if an

outsider breaks into a computer account with no notion of the compromised user's

pattern of resource usage, there is a good chance that his behavior will be anomalous.

Often, however, intrusive activity can be carried out as a sum of individual ac-

tivities, none of which is independently anomalous. Ideally, the set of anomalous

8

activities is the same as the set of intrusive activities. Then,
agging all anoma-

lous activities exactly
ags all intrusive activities, resulting in no false positives or

false negatives. However, intrusive activity does not always coincide with anomalous

activity. There are four possibilities, each with a non-zero probability:

1. Intrusive but not anomalous. These are false negatives or type I errors. That

is, the activity is intrusive but because it is not anomalous we fail to detect it.

These are called false negatives because the intrusion detection system falsely

reports absence of intrusions.

2. Not intrusive but anomalous. These are false positives or type II errors. That

is, the activity is not intrusive, but because it is anomalous, we report it as

intrusive. These are called false positives because the intrusion detection system

falsely reports intrusions.

3. Not intrusive and not anomalous. These are true negatives: the activity is not

intrusive and is not reported as intrusive.

4. Intrusive and anomalous. These are true positives: activity is intrusive and is

reported as such because it is also anomalous.

When false negatives are not desirable, thresholds that de�ne an anomaly are set

low. This results in many false positives and detracts from the e�cacy of automated

mechanisms for intrusion detection. It creates additional burdens for the security

o�cer as well, who must investigate each incident and discard many.

Anomaly detectors also tend to be computationally expensive because several

metrics are often maintained that need to be updated against every system activity.

Misuse Detection

The main assumption of misuse intrusion detection is that there are attacks that

can be precisely encoded in a manner that captures rearrangements and variations of

activities that exploit the same vulnerability. In practice not all theoretically possible

9

ways of e�ecting a particular intrusion can be captured e�ciently in an encoding. The

primary limitation of this approach is that it looks only for known weaknesses, and

may not be of much use in detecting unknown future intrusions.

Other limitations of this approach have to do with practical considerations of what

is audited. For example, current auditing practices do not record changes to program

or process variables because of the potential overall system performance impact and

the space requirements for storing the audited information. If an intrusion can only

be deduced from conditions on the values of program variables, one approach is to

predict the condition value based on the activity of the program leading up to the

condition. The general problem of deducing the value of program expressions by

examining an activity trace may require intrusive instrumentation of the program

and unbounded storage. Best estimates of such patterns are inherently inaccurate

and result in false positives, false negatives, or both.

Current auditing mechanisms also do not reveal the input or output data of a pro-

gram. These mechanisms work in modern system designs by monitoring and logging

system services requested by application programs. This often means that user-level

calls to read and write functions do not always appear in a one-to-one correspondence

in the audit trail because of bu�ered I/O. Furthermore, passive methods of security

breaches like wire-tapping cannot be detected directly because they do not produce

a detectable signature.

This approach also assumes the integrity of the event data. Thus, attacks that

involve spoo�ng, which produce the same events but from a di�erent source, cannot

be reliably detected.

1.3 Terminology

This section explains several terms used throughout the dissertation. Some of the

terms have well-accepted de�nitions among security professionals, while others have

been used in a speci�c way in this dissertation. For consistency, all cited de�nitions

have been taken from the Dictionary of Data and Computer Security [LS87]. When

10

explaining a term, references to other terms that are de�ned in this section have been

italicized.

Audit record/Event. An audit record is each individual entry of an audit trail. It is

also referred to in this dissertation as an \event." The number of distinct event

types is �nite and known a priori. Events are tagged with data. There is a

type �eld with every event that distinguishes among events in the event stream.

Events can have any number (though usually a small number) of tag �elds.

The exact number and nature of the �elds may be dependent on the type of the

event. The layout of each event is �xed, although each event type can have a

di�erent layout. Abstractly, each event is a tuple with a �eld that indicates its

type.

Audit trail/Event stream. An audit trail is de�ned in [LS87] as a chronological record

of system activities that is su�cient to enable the reconstruction, review and

examination of the sequence of environments and activities surrounding or lead-

ing to each event in the path of a transaction from its inception to output of

�nal results.

The term \event stream," against which signatures are matched, is used in the

dissertation in the same sense as an audit trail. In practice, audit trails record

service requests that applications make of the operating system, and events are

when applications make system calls. Using system service requests to record

application activity provides a trustworthy, application independent monitoring

technique that works for all applications, without requiring intrusive instrumen-

tation of the applications. Some important applications, such as login have,

however, been retro�tted to generate their own speci�c events which overlap

with other events in the audit trail.

C2 security rating of computer systems. ADepartment of Defense security evaluatio-

n criteria class requiring auditing and protection of encrypted passwords, among

others, as described in the Orange Book [oDS85]. The primary motivation

11

behind the Orange Book was the need to quantify security and trust, because

di�erent organizations and di�erent types of information require di�erent types

of security [RS91]. Brie
y, the Orange Book de�nes four categories of security

protection: D { minimal security, C { discretionary protection, B { mandatory

protection, and A { veri�ed protection. Each class requires a speci�c set of

criteria to be met by computer systems in that category.

Exploitation. An exploitation is a set of actions that result in a violation of the

security policy of a computer system. Intruders exploit system vulnerabilities

or
aws to gain unauthorized access to the system. These exploitations can

often be encoded as signatures that can be matched against the audit trail to

detect them.

Flaw. A
aw is de�ned in [LS87] as an error of commission, omission or oversight in

a system that allows protection mechanisms to be bypassed. We use vulnera-

bilities and
aws synonymously.

Matching model. This refers to the computational framework in which signatures are

encoded and matched against the audit trail. In this dissertation, when we refer

to \our matching model," we are referring to the computational framework

presented in Chapter 4.

Security policy. A security policy is de�ned in [LS87] as the set of laws, rules, and

practices that regulate how an organization manages, protects and distributes

sensitive information .

Signature. In the context of misuse intrusion detection, a signature is the speci�cation

of features, conditions, arrangements and interrelationships among events that

signify a break-in or other misuse, or their attempt. \Patterns" and \intrusion

patterns" are used in the same sense as a signature.

Vulnerability. A vulnerability is de�ned in [LS87] as a weakness in automated system

security procedures, administrative controls, internal controls etc. that could be

12

exploited by a threat to gain unauthorized access to information or to disrupt

critical processing. Anderson [And80] de�nes a vulnerability in a less abstract

way as a known or suspected
aw in the hardware or software design or operation

of a system that exposes it to penetration of its information.

1.4 A Note on the Use of Examples

The basic goal of all operating systems is to provide a convenient and e�cient

interface to computer system resources [SG94]. In so doing, they partition the set

of services exported to the user in similar ways, even though the details may di�er.

Generic studies of operating system
aws, such as those done by Linde [Lin75] and

Landwehr et al. [LBMC93] have shown striking similarities among operating system

vulnerabilities. In each categorization of their study, examples have been drawn

from several operating systems. If operating systems have similar vulnerabilities, and

o�er similar user visible resource abstractions, then the methods of exploiting these

vulnerabilities are also likely to be similar.

In this dissertation we use examples of vulnerabilities and descriptions of operating

environments derived from the UNIX operating system. This is done with the belief

that detection techniques and principles applicable to UNIX are largely applicable to

other operating systems as well, even though the details of such detection may di�er.

Our choice of using UNIX as a vehicle to illustrate how security vulnerabilities can be

classi�ed, represented, and detected is incidental. It is because we are most familiar

with UNIX, and because most publicly discussed vulnerabilities such as those in the

bugtraq mailing list [Bug], the 8lgm advisories [8lg], and the CERT advisories [CER]

have historically dealt predominantly with UNIX vulnerabilities. It is therefore easy

to use these examples to illustrate our ideas because details of these vulnerabilities

are public.

Other operating systems, such as VAX/VMS and VM/CMS are proprietary and

their source code has not been available for wide-spread scrutiny. Thus, details of

13

security vulnerabilites in these systems are largely private and do not provide a good

example set of vulnerabilities from which to illustrate our ideas.

1.5 Thesis Statement and Outline

This dissertation provides an answer to the question: Can we usefully and e�ec-

tively detect computer intrusions by applying pattern matching techniques? A more

complete statement of the thesis is:

It is possible to classify a large subset of currently known computer security

exploitations in a simple classi�cation scheme based on the time complexity

of detecting the vulnerabilities. A single computational model can be used

to represent and monitor exploitations in all the categories using pattern

matching techniques.

This dissertation applies pattern matching to intrusion detection. It o�ers a view

of computer security breaches not from their origin or intended e�ect, but from their

manifestation in the system activity trace. Previous researchers2 have looked at

computer vulnerabilities from the viewpoint of cataloging and classifying them so

that the classi�cation can provide a useful feedback to software engineers. By being

aware of the nature and statistics of
aws at di�erent stages of the software life cycle,

engineers can take e�orts to minimize their occurrence. Work has also been done to

use pattern directed approaches to detect vulnerabilities in source code, for example,

in the RISOS project [A+76].

Whereas published literature contains analyses of vulnerabilities in terms of their

origin and their possible prevention, we have focused on the runtime exploitation of

vulnerabilities. Thus, we use the term signature, or intrusion instead of vulnerabili-

ties to denote entities populating our classi�cation scheme. Using this scheme, new

intrusions can be understood and characterized in terms of the structure of events

needed to detect them. This classi�cation scheme is presented in Section 3.1.

2A good description of their work can be found in the study by Aslam [Asl95].

14

To represent and detect computer intrusions e�ciently we have devised a model.

This model uses the classi�cation scheme of Section 3.1 to group intrusions and in-

stantiates the generic requirements that we propose and defend in this thesis. These

generic requirements must be addressed by all computer intrusion detectors that use

a pattern matching approach. Our model, presented in Chapter 4, answers two key

questions of the intrusion detection problem: (1) How do we e�ectively represent

computer intrusions in a generic fashion? and (2) How do we monitor for their occur-

rence? The model is based on Colored Petri Nets and uses a modi�ed net to represent

intrusion scenarios. Detection of intrusions is posed as an acceptance problem in the

model.

We show the e�ectiveness of the pattern matching approach by building a proto-

type of our model in C++ that detects intrusions on a system where the security audit

trail is generated. The prototype is structured as a library that can be embedded in

application programs. We have designed a simple syntax to represent intrusions and a

compiler that translates these descriptions into C++ code that realizes the matching

behavior of the patterns. The software architecture of the prototype and simulation

results are presented in Chapter 6.

1.6 Summary

Intrusion detection is an important component of the security controls and mech-

anisms provided in a system. It usually forms the last line of defense against security

threats. These mechanisms are intended to detect breaches of policy that cannot

be easily detected using other methods. Intrusion detection is usually based on one

of two models: the anomaly and the misuse model. Both models make assumptions

about the nature of intrusive activity that can be detected. This dissertation proposes

a classi�cation scheme of intrusions based on their manifestation in system events and

applies pattern matching techniques to represent and detect them.

15

2. RELATED WORK IN INTRUSION DETECTION

This chapter describes the architecture of several prior intrusion detection systems.

None of them uses pattern matching directly to represent and detect intrusions. We

also describe the generic model of intrusion detection proposed by Dorothy Denning

[Den87], which is still accurate as an abstract model of most intrusion detection

systems.

In Section 3.2 we present the requirements of a pattern matching solution to any

intrusion detector that uses pattern matching to detect intrusions.

2.1 Introduction

Many intrusion detection systems employ techniques for both anomaly and misuse

intrusion detection. The techniques used in these systems to detect anomalies are var-

ied. Some are based on techniques of predicting future patterns of behavior utilizing

patterns seen thus far, while others rely mainly on statistical approaches to determine

anomalous behavior. In both cases, observed behavior that does not match expected

behavior is
agged because an intrusion might be indicated. The main techniques

used for misuse detection comprise expert systems, model-based reasoning systems,

state transition analysis, and keystroke monitoring.

Some techniques, such as the statistical approach, have resulted in systems that

have been used and tested extensively. Others, such as the model-based approach,

are still in the research stage.

16

2.2 Anomaly Intrusion Detection

In this section we discuss systems and techniques that base their decision on the

variance of predicted or expected behavior from observed behavior. These techniques

do not base their decision on the occurrence of speci�c �xed activities.

2.2.1 Statistical Approaches

The following, based on NIDES [LTG+92], serves to illustrate the generic process

of anomaly detection, which is primarily statistical in nature. The anomaly detector

observes the activity of subjects and generates pro�les for them that represent their

behavior. These pro�les are designed to use little memory to store their internal state,

and to be e�cient to update because every pro�le may potentially be updated for

every audit record.

As audit records are processed, the system periodically generates a value that is a

measure of the abnormality of the pro�le. This value is a function of the abnormality

values of all the measures comprising the pro�le. Thus, if S1; S2; : : : ; Sn represent the

abnormality values of the pro�le measuresM1;M2; : : : ;Mn respectively, and a higher

value of Si indicates greater abnormality, a combining function of the individual S

values may be a weighted sum of its squares, as in

a1S
2
1 + a2S

2
2 + � � � + anS

2
n; ai > 0

where ai re
ects the relative weight of the metric Mi. In general, the measures M1,

M2; : : : ;Mn may not be mutually independent, and may require a more complex func-

tion for combining them. Anomaly measures are just numbers without a well-de�ned

theoretical basis for combining them. For example, using multiplication of indepen-

dent anomaly measures as a basis of combination is theoretically sound in likelihood

computations, but the relationship between anomaly measures and Bayesian likeli-

hood numbers is not clear.

There are several types of measures comprising a pro�le, which include:

17

1. Activity Intensity Measures | These measure the rate at which activity is pro-

gressing. They are generally used to detect abnormalities in bursts of behavior

that might not be detected over longer term averages. An example is the number

of audit records processed for a user in one minute.

2. Audit Record Distribution Measures | These measure the distribution of all

activity types in recent audit records. An example is the relative distribution of

�le accesses and I/O activity over the entire system usage for a particular user.

3. Categorical Measures | These measure the distribution of a particular activ-

ity over categories, such as the relative frequency of logins from each physical

location, the relative usage of each mailer, compiler, shell and editor in the

system.

4. Ordinal Measures | These measure activity whose outcome is a numeric value,

such as the amount of CPU and I/O used by a particular user. While categorical

measures count the `number' of times an activity occurred, ordinal measures

compute statistics on the numerical value of the activity outcome.

The current behavior of each user is maintained in a pro�le. At regular inter-

vals the current pro�le is merged with the stored pro�le1. Anomalous behavior is

determined by comparing the current pro�le with the stored pro�le.

2.2.1.1 Pros and Cons of Statistical Intrusion Detection

The advantage of anomaly intrusion detection is that well-studied techniques in

statistics can often be applied. For example, data points that lie beyond a multiple

of the standard deviation on either side of the mean might be considered anomalous.

The integral of the absolute di�erence of two functions over time might also be used

as an indicator of the deviation of one function with respect to the other.

Statistical intrusion detection systems also have several disadvantages:

1This is true of NIDES [LTG+92], but in some systems the pro�les do not change once determined.

18

Statistical measures are insensitive to the order of occurrence of events. That

is, a purely statistical intrusion detection system may miss intrusions that are

indicated by sequential interrelationships among events.

Purely statistical intrusion detection systems can be trained gradually to a

point where behavior, once regarded abnormal, is considered normal. Intruders

who know that they are being monitored by anomaly detectors can train such

systems. Thus, most existing intrusion detection schemes combine both a sta-

tistical part to measure aberration of behavior, and a misuse part that monitors

the occurrence of speci�c patterns of events.

It is di�cult to determine thresholds above which an anomaly should be consid-

ered intrusive. Setting a threshold too low results in false positives and setting

it too high results in false negatives.

There is a limit to the types of behaviors that can be modeled using purely

statistical methods. Application of statistical techniques to the formulation

of anomalies requires the assumption that the underlying data comes from a

quasi-stationary process, an assumption that may not always hold. More ac-

curate models such as generalized Markov chains are more complex and time-

consuming to build.

2.2.2 Feature Selection

A di�cult problem in anomaly intrusion detection is determining the correspon-

dence between anomalous activity and intrusive activity. Given a set of heuristically

chosen measures that can have a bearing on detecting intrusions, the subset that ac-

curately predicts or classi�es intrusions has to be determined. This is called feature

selection. Determining the right measures is complicated because the appropriate

subset of measures depends on the types of intrusions being detected. One set of

measures will not likely be adequate for all types of intrusions. Prede�ned notions of

the relevance of particular measures to detect intrusions might miss intrusions unique

19

to a particular environment. The set of optimal measures for detecting intrusions

must be determined dynamically for best results.

Consider an initial list of n measures as potentially relevant to predicting intru-

sions. The number of possible subsets of these n measures, which is the power set of

these measures, is 2n. Because the search space is exponentially related to the number

of measures, an exhaustive search for the optimal subset of measures is not e�cient.

Maccabe et al. present a genetic approach to searching through this space for the

right subset of metrics [HLMS90]. Using a learning classi�er scheme they generate an

initial set of measures which is re�ned in the rule evaluation mode using genetic oper-

ators of crossover and mutation. Subsets of the measures under consideration having

low predictability of intrusions are weeded out and replaced by applying genetic oper-

ators to yield stronger measure subsets. The method assumes that combining higher

predictability measure subsets allows searching the space of metrics more e�ciently

than other heuristic techniques.

For a survey of other feature selection techniques see Doak [Doa92].

2.2.3 Combining Individual Anomaly Measures to Get a Single Measure

If we assume that the right set of anomaly metrics can somehow be determined,

how do we then combine the anomaly values of all the metrics to get a single number?

One method is to use Bayesian statistics, applied either from �rst principles or through

belief networks. Another approach, used in NIDES [LTG+92], is to combine them

using covariant matrices.

2.2.3.1 Bayesian Statistics

Let A1; A2; : : : ; An be n measures used to determine if an intrusion is occurring on

a system at any given moment. Each Ai measures a di�erent aspect of the system,

such as the amount of disk I/O activity, or the number of page faults in the system.

Let each measure Ai have two values, 1 implying that the measure is anomalous,

and 0 otherwise. Let I be the hypothesis that the system is currently undergoing

20

an intrusive attack. The reliability and sensitivity of each anomaly measure Ai is

determined by the numbers P (Ai = 1jI) and P (Ai = 1j:I). The combined belief in

I given the values of each Ai, is given by Bayes' theorem as:

P (IjA1; A2; : : : ; An) = P (A1; A2; : : : ; AnjI)
P (I)

P (A1; A2; : : : ; An)

This would require the joint probability distribution of the set of measures conditioned

on I and :I. The number of joint probabilities required is exponential in the number

of metrics. To simplify calculation at the expense of accuracy, we might assume that

each measure Ai depends only on I and is conditionally independent of the other

measures Aj; j 6= i. That would yield

P (A1; A2; : : : ; AnjI) = �n
i=1P (AijI)

and

P (A1; A2; : : : ; Anj:I) = �n
i=1P (Aij:I)

which leads to
P (IjA1; A2; : : : ; An)

P (:IjA1; A2; : : : ; An)
=

P (I)

P (:I)

�n
i=1P (AijI)

�n
i=1P (Aij:I)

That is, we can determine the odds2 of an intrusion given the values of various

anomaly measures, from the prior odds of the intrusion and the likelihood of each

measure being anomalous when an intrusion is occurring, i.e., the terms P (AijI)
P (Aij:I)

.

To derive a more realistic estimate of P (IjA1; A2; : : : ; An), however, we must take

the interdependence of the various measures Ai into account.

2.2.3.2 Covariance Matrices

NIDES [LTG+92] uses covariance matrices to account for the interrelationships

among measures. If the measures A1; : : : ; An are represented by the vector A, then

the compound anomaly measure is determined by

ATC�1A

2 odds(A) = P (A)
P (:A) .

21

where C is the covariance matrix representing the dependence between each pair of

anomaly measures Ai and Aj.

2.2.3.3 Belief Networks

Future systems might use Bayesian or other belief networks to combine anomaly

measures. Bayesian networks [Pea88] allow the representation of causal dependen-

cies between random variables in graphical form and permit the calculation of the

joint probability distribution of the random variables by specifying only a small set of

probabilities that relate only to neighboring nodes. This set consists of the prior prob-

abilities of all the root nodes (nodes without parents) and the conditional probabilities

of all the non-root nodes given all possible combinations of their direct predecessors.

Bayesian networks, which are DAGs with arcs representing causal dependence be-

tween the parent and the child, permit absorption of evidence when the values of

some random variables become known, and provide a computational framework for

determining the conditional values of the remaining random variables, given this ev-

idence.

As an example, consider the trivial Bayesian network model of an intrusion shown

in Figure 2.1.

DISK I/O CPU NET I/O

INTRUSION

Fragmentation Newly Available
Program on the
Net

Thrashing

Too Many
 Users

Too Many
Disk Intensive
Jobs

Too Many
CPU Intensive
Jobs

Figure 2.1 A Trivial Bayesian Network Modeling Intrusive Activity

22

Each box represents a binary random variable with values representing either

its normal or abnormal condition. If we can observe the values of some of these

variables, we can use Bayesian network calculus to determine P (IntrusionjEvidence).

However, in general it is not trivial to determine the a priori probability values of

the root nodes and the link matrices for each directed arc. For a good introduction

to Bayesian Networks see the article by Charniak [Cha91].

2.2.4 Predictive Pattern Generation

Predictive pattern generation is a technique of anomaly detection that is based

on the hypothesis that sequences of events are not random but follow a discernible

pattern. This results in better intrusion detection because it takes into account the

interrelationship and ordering among events.

The approach of time-based inductive generalization described by Teng and Chen

[Che88, TCL90] uses time-based rules that characterize the normal behavior patterns

of users. The rules, generated inductively, are modi�ed dynamically during the learn-

ing phase and only \good" rules, i.e., rules with a high accuracy of prediction and a

high level of con�dence remain in the system. A rule has high accuracy of prediction

if it is correct most of the time, and it has a high level of con�dence if it can be

successfully applied many times in observed data. An example of a rule generated by

TIM [TCL90] may be

E1!E2!E3) (E4 = 95%, E5 = 5%)

where E1|E5 are security events. This rule, which is based on previously observed

data, says that for the pattern of observed events E1 followed by E2 followed by E3,

the probability of seeing E4 is 95% and that of E5 is 5%. TIM can generate more

general rules that incorporate temporal relationships among events.

A set of rules generated inductively by observing user behavior comprises the

pro�le of the user. A deviation is detected if the observed sequence of events matches

23

the left hand side of a rule but the following events deviate signi�cantly from those

predicted by the rule.

A primary weakness of this approach is that unrecognized patterns of behavior

may not be recognized as anomalous because they may not match the left hand side

of any rule.

The strengths claimed for this approach are:

1. Better handling of users with wide variances of behavior but strong sequential

patterns.

2. Ability to focus on a few relevant security events rather than the entire login

session that has been labeled suspicious.

3. Better sensitivity to detection of violations. Cheaters who attempt to train the

system during its learning phase can be discerned more easily because of the

semantics built into the rules.

2.2.5 Neural Networks

The basic approach here is to train the neural net on a sequence of information

units [FHRS90] (from here on referred to as commands), each of which may be at a

more abstract level than an audit record. The input to the net consists of the current

command and the past w commands; where w is the size of the window of past

commands that the neural net takes into account in predicting the next command.

Once the neural net is trained on a set of representative command sequences of a user,

the net constitutes the pro�le of the user, and the fraction of incorrectly predicted

next events then measures, in some sense, the variance of the user behavior from his

pro�le. A conceptual diagram depicting the use of neural nets is shown in Figure 2.2.

The arrows directed at the input layer form the sequence of the last w commands

issued by the user. Every input in this idealized representation encodes several values

or levels, each of which uniquely identi�es a command. Thus the values of the inputs

at the input layer correspond exactly to the sequence of the last w commands. The

24

output layer conceptually consists of a single multi-level output that predicts the next

command to be issued by the user.

Input Layer Output Layer

Next Predicted Command

ls

chmod

pwd

vi

...

Figure 2.2 A Conceptual Use of Neural Nets in Intrusion Detection

For a good introduction to neural networks and learning in neural nets by back

propagation see the book by Winston [Win92].

Some of the drawbacks of this approach are:

1. The topology of the net and the weights assigned to each element of the net are

determined only after considerable trial and error.

2. The size of the window w is yet another independent variable in the neural net

design. If w is set too low, the net will do poorly, if it is set too high, the net

will su�er from irrelevant data.

Some advantages of this approach are:

1. The success of this approach does not depend on any statistical assumptions

about the nature of the underlying data.

2. Neural nets cope well with noisy data.

3. Neural nets can automatically account for correlations between the various mea-

sures that a�ect the output.

25

2.2.6 Bayesian Classi�cation

Bayesian classi�cation, described by Cheeseman [CHS91], is a technique of un-

supervised classi�cation of data. Its implementation, Autoclass [CKS+88], searches

for classes in the given data using Bayesian statistical techniques. This technique

attempts to determine the most likely processes that generate the data. It does not

partition the given data into classes but de�nes a probabilistic membership function of

each datum in the most likely determined classes. Some advantages of this approach

are:

1. Autoclass automatically determines the most probable number of classes, given

the data.

2. No ad hoc similaritymeasures, stopping rules, or clustering criteria are required.

3. Continuous and discrete attributes may be freely mixed.

In statistical intrusion detection we are concerned with a classi�cation of observed

behavior. Techniques used till now have concentrated on supervised classi�cation in

which user pro�les are created based on each user's observed behavior. The Bayesian

classi�cation method would permit the determination of the optimal number of classes

(probablistically computed), grouping users with similar pro�les, and thus yielding a

natural classi�cation of a set of users.

This approach is new and has not yet been implemented and tested in an intrusion

detection system. It is not obvious how well Autoclass handles inherently sequential

data such as an audit trail, and how well the statistical distributions built into Auto-

class will handle user-generated audit trails. It is also unclear if this technique lends

itself to online data, i.e., whether Autoclass can do its classi�cation incrementally as

new data becomes available, or whether it requires all the input data at once. Being

statistical in nature, it also su�ers from some of the same generic failings of statistical

systems, namely the di�culty in determining the right anomaly thresholds and the

user ability to gradually in
uence class distributions.

26

2.3 Misuse Intrusion Detection

Misuse intrusion detection refers to the detection of intrusions by precisely de�ning

them ahead of time and watching for their occurrence. There is a misuse component in

most intrusion detection systems because statistical techniques alone are not adequate

to detect all types of intrusions. The limitations of statistical anomaly detectors are

outlined in Section 2.2.1.1.

Intrusion signatures specify the features, conditions, arrangements and interrela-

tionships among events that lead to a break-in or other misuse. Signatures are not

only useful to detect intrusions but also attempted intrusions. A partial satisfaction

of a signature may indicate an intrusion attempt.

A misuse intrusion detector that simply
ags intrusions based on the pattern of

input events assumes that the state transition of the system (computer) leads to a

compromised state when exercised with the intrusion pattern, regardless of the initial

state of the system. Therefore, simply specifying an intrusion signature without the

beginning state speci�cation is sometimes insu�cient to capture an intrusion scenario

fully. For a security model de�nition of an intrusion and a pattern oriented approach

to its detection, see also Gligor and Shieh [SG91].

In the following sections we describe the various approaches to misuse detection.

2.3.1 Using Conditional Probability to Predict Misuse Intrusions

This method of predicting intrusions is similar to the one outlined in Section 2.2.3.1

except that the \evidence" is now a sequence of external events rather than values of

anomaly measures. For misuse intrusion detection we are interested in determining

the conditional probability

P (IntrusionjEvent Pattern)

Applying Bayes law, as before, to the above equation, we get

P (IntrusionjEvent Pattern) = P (Event PatternjIntrusion)
P (Intrusion)

P (Event Pattern)
(2.1)

27

Consider the campus network of an university as the domain within which the

conditional probability of intrusion is to be predicted. A security expert associ-

ated with the campus wide network might be able to quantify the prior probability

of occurrence of an intrusion on the campus system, or P (Intrusion), based on his

experience. Further, if the intrusion reports from all of the campus systems are tab-

ulated, one can determine, for each type of event sequence comprising an intrusion,

its P (Event SequencejIntrusion). The relative frequency of occurrence of the event

sequence in the entire intrusion set gives this probability. Similarly, given a set of

intrusion-free audit trails, one can determine, by inspection and tabulation, the prob-

ability P (Event Sequencej:Intrusion). Given the two conditional probabilities, one

can easily determine the left hand side of Equation 2.1 above from simple Bayesian

arithmetic because the prior probability of an event sequence is

P (Event Sequence) = (P (ESjI)� P (ESj:I)) � P (I) + P (ESj:I)

where ES stands for event sequence and I stands for intrusion.

2.3.2 Production/Expert Systems in Intrusion Detection

The salient feature of using production systems is the separation of control rea-

soning from the formulation of the problem solution.

An example of the use of such systems in intrusion detection is described by

Snapp and Smaha [SS92]. This system encodes knowledge about attacks as if-then

implication rules in CLIPS [Gia92] and asserts facts corresponding to audit trail

events. Rules are encoded to specify the conditions requisite for an attack in their if

part. When all the conditions on the left side of a rule are satis�ed, the actions on

the right side are performed.

Practical problems in the e�ective application of production systems in intrusion

detection are the large amount of data to be handled and the inherent ordering of

the audit trail. The chief goals of production systems in intrusion detection can be

classi�ed into the following types:

28

1. to deduce symbolically the occurrence of an intrusion based on the given data.

The chief problems in this use of production/expert systems are:

(a) No inbuilt or natural handling of sequential order of data. That is, the

working memory elements (fact base) that match the left sides of produc-

tions to determine eligible rules for �ring are not recognized by the system

to be sequential. Furthermore, the left side of a production rule speci-

�es that its elements are connected with the AND relation. To match a

natural ordering of facts within this framework, the Rete match procedure

[For82] tests the ordering constraints for every eligible pair after the sets of

working elements conforming to the left side of the production have been

generated.

(b) The expertise incorporated in the production/expert system is only as good

as that of the security o�cer whose skills are modeled, which may not be

comprehensive [Lun93]. This is a practical consideration, and is probably

a concern at the lack of a concerted e�ort on the part of security experts

to attempt to distill their knowledge into a comprehensive security rule

set. However, if rule sets need to be tailored and optimized for individual

environments, then it might not be possible to circumvent this limitation.

(c) This technique can only detect known vulnerabilities.

(d) There are software engineering concerns in the maintenance of the knowl-

edge base [Lun93]. That is, additions and deletions of rules in the rule set

must take the interactions of the changes with the rest of the rule set into

consideration.

2. to combine various intrusion measures and construct a cohesive picture of in-

trusions { do uncertainty reasoning. The limitations of production systems that

use uncertainty reasoning are well-known. See the book by Judea Pearl [Pea88]

for a good description. Also see Section 2.3.5 for a list of these limitations.

29

2.3.3 State Transition Analysis

In this approach, taken in STAT [PK92] and implemented for UNIX in USTAT

[Ilg92], attacks are represented as a sequence of state transitions of the monitored

system. States in the attack pattern correspond to system states and have boolean

assertions associated with them that must be satis�ed to transit to that state. Suc-

cessive states are connected by arcs that represent the events required for changing

state. The types of allowable events are built into the model and need not correspond

one-to-one with audit records. Attack patterns can only specify a sequence of events

so more complex ways of specifying events are not permitted. Furthermore, there is

no general purpose mechanism to prune partial matches of attacks other than through

assertion primitives built into the model.

2.3.4 Keystroke Monitoring

This technique utilizes user keystrokes to determine the occurrence of an attack.

The primary means is to pattern match for speci�c keystroke sequences that indicate

an attack. The disadvantages of this approach are the lack of reliable mechanisms

for user keystroke capture without operating system support, and the myriad ways

of expressing the same attack at the keystroke level. Furthermore, without a seman-

tic analysis of the keystrokes, aliases provided in user shells such as the Korn shell

[BK89] can easily defeat this technique. User login shells often provide the facility

of associating parameterized shorthand names for command sequences. These are

called aliases and are similar to macro de�nitions. Because this technique only ana-

lyzes keystrokes, automated attacks that are a result of malicious program executions

cannot be detected.

2.3.5 Model-Based Intrusion Detection

This approach was proposed by Garvey and Lunt [GL91] and is a variation on

misuse intrusion detection that combines models of misuse with evidential reasoning

30

to support conclusions about the occurrence of a misuse. There is a database of

attack scenarios, each of which comprises a sequence of behaviors making up the

attack. At any given moment, a subset of these attack scenarios are considered as the

likely ones by which the systemmight currently be under attack. An attempt is made

to verify these scenarios by seeking information in the audit trail to substantiate or

refute them (this process is termed in [GL91] as the anticipator.) The anticipator

generates the next set of behaviors to be veri�ed in the audit trail, based on the

current active models, and passes these sets to the planner. The planner determines

how the hypothesized behavior is re
ected in the audit data and translates it into a

system dependent audit trail match. This mapping from behavior to activity must

be such as to be easily recognized in the audit trail, and must have a high likelihood

of appearing in the behavior. That is to say

P (ActivityjBehavior)

P (Activityj: Behavior)

must be large.

As evidence for some scenarios accumulates, while for others the evidence drops,

the list of active models is updated. The evidential reasoning calculus built into the

system permits one to update the likelihood of occurrence of the attack scenarios in

the active models list.

The advantages of model-based intrusion detection are:

1. It is based on a mathematically sound theory of reasoning in the presence of

uncertainty. This is in contrast to expert system approaches of dealing with

uncertainty where retraction of intermediate conclusions is not easy as evidence

to the contrary accumulates. Expert systems also have di�culty in explaining

away conclusions that are contradicted by later asserted facts. These problems

can be avoided in the evidential reasoning approach.

2. It can potentially reduce substantial amounts of processing required per audit

record by monitoring for coarser-grained events in the passive mode and then

actively monitoring for �ner-grained events as coarser events are detected.

31

3. The planner provides independence of representation from the underlying audit

trail representation.

The disadvantages of model-based intrusion detection are:

1. This approach places additional burden on the person creating the intrusion

detection model to assign meaningful and accurate evidence numbers to various

parts of the graph representing the model.

2. The runtime e�ciency of this approach has not been demonstrated by building

a prototype. It is not clear from the model description how behaviors can be

compiled e�ciently in the planner and the e�ect this will have on the runtime

behavior of the detector.

Model-based intrusion detection does not replace the statistical anomaly portion

of intrusion detection systems, but complements it. For a thorough treatment of

reasoning in the presence of uncertainty see the book by Judea Pearl [Pea88].

2.4 A Generic Intrusion Detection Model

Dorothy Denning, in 1987, established a model of intrusion detection independent

of the system, type of input, and the speci�c intrusions to be monitored [Den87].

A brief description of the generic model is helpful in relating speci�c examples of

intrusion detection systems presented in earlier sections to the model and viewing

how these systems �t into or enhance it. The model is still accurate in describing the

architecture of many current systems.

Figure 2.3 depicts the architecture of the generic intrusion detection model. The

event generator is generic, the actual events may be audit records, network packets,

or any other observable activity. These events serve as the basis for the detection

of abnormality in the system. The Activity Pro�le is the global state of the intru-

sion detector. It contains variables that calculate the behavior of the system using

prede�ned statistical measures. These variables are smart variables, i.e., each vari-

able is associated with a pattern speci�cation that serves to �lter event records. The

32

matched records provide data to update their value. For example, there may be a

variable NumErrs representing the statistical measure sum which calculates the total

number of errors committed by the subject in a single login session. Each variable is

associated with one of the statistical measures built into the system, and is respon-

sible for updating its state based on the information contained in the matched event

records.

The Activity Pro�le can also generate new pro�les dynamically for newly created

subjects and objects based on pattern templates. If new users are added to the

system, or new �les created, these templates instantiate new pro�les for them. The

Activity Pro�le can also generate anomaly records when some statistical variable

takes on an anomalous value, for example when NumErrs takes on an inordinately

high value. The Rule Set represents a generic inferencing mechanism and uses event

records, anomaly records, and time expirations, among others, to control the activity

of the other components and to update their state. Denning [Den87], however, uses

rule-based systems to explain the inferencing mechanism and the nature of interaction

with the other components.

Comparison with Other Systems

The primary di�erences between the generic model described above and actual

systems described in previous sections are:

How the rules comprising the Rule Set are determined.

Whether the rule set is coded a priori or if it can adapt and modify itself

depending on the type of intrusions.

The nature of interaction between the Rule Set and the Activity Pro�le.

The basic theme, however, of formulating statistical metrics good for identifying

intrusions, computing their value, and recognizing anomalies in their values appears

in most of the systems built to-date. Conceptually, the ActivityPro�le module detects

anomalies, while the Rule Set module performs misuse detection. Di�erent techniques

33

and methods can be substituted for these modules without altering the conceptual

view substantially.

However, some newer techniques of anomaly detection do not map well into the

internal details of the Activity Pro�le. For example, the neural net approach of

anomaly detection does not easily �t the framework of smart variables and the cal-

culation of a number for an anomaly value. Learning and adaptation of rule sets and

pro�les is not modeled well. It is also not clear in which module TIM [TCL90] would

be placed. TIM detects behavioral anomalies and therefore might be a candidate

for being placed in the Activity Pro�le, but it does so by generating rules and �ring

them when conditions in the if part of the rules is satis�ed, which also makes it a

candidate for being part of the Rule Set. Very recent approaches like model-based

approaches are too di�erent to �t this framework directly.

Event Generator

Activity Profile Rule Set

CLOCK

Generate New Profiles Dynamically

Audit Trail/Network Packets/Application Trails

Update Profile

Assert New Rules
Modify Existing Rules

Generate Anomaly
Records

Figure 2.3 A Generic Intrusion Detection Model

2.5 Shortcomings of Current Intrusion Detection Systems

The following is a commentary on the weaknesses of intrusion detection systems

taken as a whole. Di�erent implementations rate di�erently along these axes of

comparison. Our approach o�ers a new approach to building misuse detectors that is

34

e�cient and easy to maintain. Performance results for our prototype implementation

are described in Chapter 6 and coverage results are presented in Chapter 7.

No Generic Building Methodology. In general, the cost of building an intrusion de-

tection system from scratch is substantial. This is because of the lack of a

structured methodolgy for building these systems. No such structuring insights

have emerged from the �eld itself. This may partly be a result of a lack of

common agreement on the techniques for detecting intrusions and partly be-

cause intrusion detection is a young �eld of study, initiated by Anderson in

1980 [And80].

E�ciency. Systems have often attempted to detect every conceivable intrusion and

have not done well in practice. Anomaly detection, for example, is computa-

tionally expensive because all pro�les maintained by the system may need to

be updated for every event. Misuse detection has usually been implemented us-

ing expert system shells that encode and match signatures. These shells often

interpret their rule set and thus have a high runtime overhead. Furthermore,

rule sets permit only an indirect speci�cation of the sequential interrelationships

between events.

Portability. Intrusion detection systems have thus far been written for single envi-

ronments and have proved di�cult to use in other environments that may have

similar policies and concerns. For example, moving the detection machinery

from a system that provides a single level discretionary access control to a

multi-level secure system is nontrivial even though the same concerns may ap-

ply to both. This is because much of the system has tended to be speci�c to

the environment being monitored. Each system is, in some sense, ad-hoc and

custom-designed for its target. Reuse and retargetting are di�cult unless the

system is designed in such a generic manner that it may be ine�cient or of

limited power.

35

Upgradability. It is di�cult to retro�t existing systems with newer and better tech-

niques of detection as they become available. For example, incorporating a

Bayesian belief network to predict intrusions into an existing system would be

di�cult because of a lack of clear understanding of how this functionality must

interact with the rest of the system.

Maintenance. The maintenance of intrusion detection systems often requires skills

substantially more varied than a knowledge of security. Upgrading rule sets,

for example, often requires specialized knowledge about the expert system rule

language and an understanding of how the system manipulates the rules. This

helps avoid undesirable interactions between the rules already present in the

system and those being added. Similar considerations apply to the addition of

statistical metrics to the statistical component of the detector.

Performance and Coverage Benchmarks. No data has been published to date that

quanti�es the performance of intrusion detection systems for a realistic set of

vulnerability data and operating environment. Furthermore, there is no pub-

lished coverage data on any system, commercial or research. Coverage data

would indicate the percentage of intrusions that the system would detect in

a real environment. Vendors often treat coverage qualitatively. This is partly

because it is di�cult to accurately ascertain the kinds of intrusions and their fre-

quency of occurrence in large environments, particularly the Internet. Nonethe-

less, there is no published coverage data even on publicly available vulnerabili-

ties.

No Good Way to Test. There is no easy way to test intrusion detection systems. Po-

tential attack scenarios are di�cult to simulate and known attacks di�cult to

duplicate. The lack of a common audit trail format between systems also ham-

pers experimentation and comparison of the e�ectiveness of existing systems

against common attack scenarios.

36

2.6 Summary of Intrusion Detection Techniques

Several intrusion detection systems have been proposed and implemented. Most

of them derive from the statistical intrusion detection model of Dorothy Denning

[Den87]. Some of them, for example NIDX [BK88], Haystack [Sma88], IDES [LJL+89],

MIDAS [SSHW88], Wisdom and Sense [LV89] and CMDS [Pro94] use the audit trail

generated by a C2 or higher rated computer, for input. Others, for example NICE

[MMA, HLMS90] and NSM [HLM91] try to analyze intrusions by analyzing network

connections and the
ow of information in a network. Others still, such as DIDS

[SBD+91] have expanded the scope of detection by distributing anomaly detection

across a heterogeneous network and centrally analyzing partial results of these dis-

tributed sources to detect potential intrusions that may be missed by the individual

analysis of each source.

Among non-statistical approaches to intrusion detection is the work by Teng

[TCL90] that analyzes individual user audit trails and attempts to infer the sequential

relationships between events; and the neural net modeling of behavior by Simonian

et al. [FHRS90].

Approaches to misuse intrusion detection include language-based approaches to

represent and detect intrusions such as ASAX [HCMM92], developing an Application

Programming Interface, i.e., a set of library function calls employed for represent-

ing and detecting intrusions, such as in STALKER [Sma95], expert systems such as

MIDAS [SSHW88] and NIDX [BK88], and high level state machines to encode and

match signatures such as STAT [PK92] and USTAT [Ilg92].

A promising approach for future intrusion detection systems might involve Bayes-

ia-n classi�cation, currently implemented in Autoclass [CKS+88, CHS91]. Audit trail

reduction and browsing is described by Wetmore [Wet93] and Moitra [Moi], while

a non-parametric pattern recognition technique is discussed by Lankewicz [Lan92].

Audit trail reduction techniques permit the compression of audit data into coarser,

more abstract events, that may be queried later by the security o�cer to retrieve

37

information rapidly and e�ciently. Non-parametric techniques for anomaly detection

have the advantage that they make no assumptions about the statistical distribution

of the underlying data, and are useful when such assumptions do not hold.

38

3. A SCHEME FOR CLASSIFYING INTRUSION SIGNATURES

The goal of intrusion detection by examining the audit trail is to determine when

a computer system has entered, or is likely to enter, a faulty or intruded state. This

chapter focuses on \examination" of the audit trail in the context of misuse intrusion

detection by showing how common features of the examination process can be used

to categorize intrusion signatures.

In the �rst part of this chapter we introduce an abstract hierarchy for classifying

intrusion signatures based on the structural interrelationships among the events that

compose the signature. These structural interrelationships are de�ned over high-

level events or activities, which are themselves de�ned in terms of low level audit

trail events. The abstract hierarchy can be instantiated into a concrete hierarchy

by precisely de�ning a high-level event in terms of low level audit trail events. An

instantiated hierarchy permits the determination of precise theoretical complexity

bounds of matching signatures in each level of the hierarchy.

The abstract hierarchy presented here does not classify security vulnerabilities.

Instead, it classi�es signatures that are used to detect the exploitation of vulnerabil-

ities. In the latter part of the chapter we describe how pattern matching can be used

to \examine" the audit trail for the occurrence of these signatures. We show how tra-

ditional pattern matching is inadequate to represent and match intrusion signatures

by presenting the requirements that a framework of pattern matching solution must

provide to represent intrusion signatures.

We instantiate the abstract hierarchy by de�ning a \high-level event" as a DAG

and combining it with the pattern matching requirements, into a model of matching.

This model, presented in Chapter 4, can represent signatures in each level of the

hierarchy. A prototype implementation of the model is presented in Chapter 6.

39

3.1 A Hierarchy of Intrusion Signatures

We de�ne the hierarchy of intrusion signatures, which is partitioned on the struc-

tural interrelationships among the elements of the signatures, in terms of high-level

events. The bene�ts of this hierarchy are:

� It permits a classi�cation of signatures based on common characteristics that

are abstracted from any particular way of specifying and matching them. Such a

classi�cation provides conceptual bene�ts of understanding intrusion signatures.

By specifying that a signature belongs to a particular class, it conveys the

structural interrelationships of high-level events that comprise the signature.

Thus, instead of referring to an exploitation as a race condition attack involving

the exec system call, one might refer to it as a sequence pattern. This abstracts

details of the exploitation by removing mention of exec, the temporal nature

of the attack, or other system dependent properties.

As a consequence of partitioning based on the structural interrelationship among

high-level events, seemingly intuitive partitions based on temporal characteris-

tics of attacks are subsumed under categories in this hierarchy. Our partition

does not treat any attribute of events specially and temporal characteristics are

treated as properties of a particular \time" attribute.

� It o�ers another way to partition intrusions based on what can be precisely

monitored as opposed to how it is monitored. The traditional way intrusions

have been partitioned has been to group them based on a technique for detec-

tion. This has resulted in the generic approaches of \anomaly" and \misuse"

detection. By treating intrusion detection as signature matching, intrusions can

be classi�ed based on the manifestations of their exploitation in the audit trail.

Many intrusions that are detected as anomalies, such as an unusual number of

failed logins, can be represented and matched as signatures.

40

� If the patterns that we are interested in modeling for intrusion detection possess

common characteristics, exploiting these characteristics might result in more

e�cient matching solutions.

3.1.1 Classify Vulnerabilities or Signatures?

As mentioned earlier, our hierarchy classi�es signatures rather than vulnerabilities.

In this section we justify why this is more meaningful from the viewpoint of detection.

Cataloging of software bugs has been of keen interest to software engineers. The

rationale for this interest is summarized by Bezier [Bez83] as:

It is important to establish categories for bugs if you take the goal of

bug prevention seriously. If a particular kind of bug recurs or seems to

dominate the kinds of bugs you have, then it is possible through education,

training, new controls, revised controls, documentation, inspection, and a

variety of other methods to reduce the incidence of that kind of bug. If you

have no statistics on the frequency of bugs, you cannot have a rational

perspective on where and how to allocate your limited bug prevention

resources.

The predominant view taken here is that of prevention. By studying the point of origin

and the nature of signi�cant
aws in software systems, one can devise techniques

to reduce them. Studies that have focused on security vulnerabilities in operating

systems, such as the one done by Landwehr et al. [LBMC93], have also taken the

view of prevention. The intent is to learn from mistakes so that future systems might

avoid repeating mistakes.

No study to date has been reported that classi�es
aws based on the di�culty

of the runtime detection of
aw exploitations. A classi�cation scheme intended to

provide feedback to build secure software may be quite di�erent from a classi�cation

scheme based on the technique for detecting exploitations of
aws in system software.

For example, function parameter validation as a category in the former classi�cation

41

scheme is useful because it corresponds directly to preventive steps that can be taken

to avoid
aws resulting from such problems. However, when viewed from the per-

spective of runtime detection, we are primarily concerned with the manifestation of

the exploitation of the
aw in the running system. Two faults that are a result of im-

proper or incomplete parameter checking may result in very di�erent manifestations

and thus should be classi�ed in di�erent categories.

Studies that have focused on penetration analysis, for example the RISOS project

study [A+76] and the study by Landwehr et al. [LBMC93] have attempted to develop

a syntax-directed approach to the detection of security
aws. The aim of these studies

is to develop patterns indicative of
aws that can be matched in system source code.

We are proposing a dynamic characterization of
aws based on their manifestation in

a running system because that is what intrusion detection attempts to do.

3.1.2 Our Classi�cation

Our abstract classi�cation hierarchy has four categories in which a category at a

higher level subsumes the category below it in terms of the signatures that can be

represented in the category. Precise bounds on matching in each category can be made

by instantiating this abstract category. Instantiation requires a precise de�nition of

the structure of a high-level event in terms of low-level audit trail events. For example,

a simple instantiation of the hierarchy can be made by de�ning a high-level event to be

the same as an audit trail event. This results in a particular distribution of intrusion

signatures in the various categories of the hierarchy. By de�ning a high-level event

structure in more complex ways, this distribution can be shifted to move signatures

from higher levels to lower levels. The \best" choice of such a de�nition depends

in part on the nature of the audit trail. A high-level event serves to encapsulate

di�erences in audit trails so that intrusion signatures remain relatively unchanged

when written using high-level events. As a useful example, we have instantiated this

abstract hierarchy for the Sun BSM [Sun93b] audit trail by de�ning a high-level event

as a DAG of audit trail events. This choice is based on the Sun implementation of

42

recording read and write system calls in the audit trail as separate events for each
ag

speci�ed as an argument to these calls. This instantiation is presented in Chapter 4.

In the discussion below, we use the term \thing" for a \high-level event." Our

classi�cation scheme, in increasing order of representability of signatures, is:

1. Existence. The fact that something existed is su�cient to detect the intrusion at-

tempt. Existence patterns can be thought of as system state predicates that

can be evaluated by inspecting the state of the system at a �xed time, rather

than predicates on events. Examples include searching for speci�c permissions

on special �les, looking for the presence of certain �les, or ensuring that �le con-

tents follow a speci�c format, both syntactic and semantic. Existence patterns

look for evidence that may have been left behind by an intruder. Existence pat-

terns are needed, for example, when all security-relevant activity is not re
ected

in the audit trail, or when the integrity of the audit trail is questionable. This

can happen when �le systems are remotely mounted, or when the audit trail is

destroyed by the intruder. Existence patterns may then be devised to scan the

�le system for the presence of unauthorized setid1 �les, unsafe permissions on

devices, etc.

Although the focus of our classi�cation is to categorize signatures, not vulnera-

bilities, an extension of existence patterns can also be used to detect vulnerabil-

ities in systems. A study conducted by Bishop on UNIX vulnerabilities [Bis95]

revealed that as many as 95% of all vulnerabilities in his study originated from

con�guration problems. These can be modeled and detected using existence

patterns. Checks performed by static analysis tools such as COPS [FS90] and

TIGER [SSH93] can also be modeled by existence patterns. Example vulnera-

bilities:

� Cert Advisory 93:03 [CER]. The default permissions on a number of �les

and directories in SunOS 4.1 were being set incorrectly. Because UNIX

1Both setuid and setgid.

43

models devices as �les, incorrect permissions may permit kernel memory

to be read for passwords or devices read from or written to.

� Cert Advisory 93:15 [CER]. The device /dev/audio was world readable

so any user with an account on the system could listen to any conversation

that was within audible range of the built-in microphone.

An existence signature to detect these vulnerabilities checks to see if the per-

missions on the relevant �les are set incorrectly.

The time required to match patterns of this type is constant per event and is

independent of the history of events leading up to the current event.

2. Sequence. The fact that several \things" happened in strict sequence is su�cient

to specify the intrusion. The time to process an event for sequence patterns

depends on the events in the event stream that occurred before the event. If

patterns can specify constraints that hold on the data �elds associated with

events, then matching sequences is computationally at least as di�cult as solv-

ing NP Complete problems, i.e., it is NP Hard. Simple constraints involving

only equality tests between \things" comprising a sequence pattern can rep-

resent NP Complete problems. For example, to determine the Hamiltonian

path of an arbitrary graph with n vertices, a sequence pattern can be devised

that selects n distinct vertices (speci�ed using equality constraints) such that

consecutive vertices in the selection are valid edges in the graph.

Two special cases of this category relevant to intrusion detection are:

1. Interval. \Things" happened an interval x apart within a speci�ed accuracy

�. This is speci�ed by the condition that an event occur no earlier than

x�� and no later than x+� units of time after another event.

44

2. Duration. This requires that \things" existed or happened for not more than

nor less than a certain interval of time. Duration of complex events can

often be speci�ed as interval constraints between simpler ones.

Both types of requirements can be handled within the framework of sequence

patterns by using appropriate context expressions, or constraints. As an exam-

ple of a sequence pattern, consider the representation of a race condition attack

that involves switching a link to a setuid shell script �le. This scenario exploits

the #!mechanismof determining the executable �le to run in the exec() system

call. In some older UNIX kernels exec reads the �rst two bytes of the program

�le it is trying to execute to determine if it is a shell �le. If the �rst two bytes

are #!, it reads the next several bytes to determine the name of the interpreter

to run and gives the name of the current �le (the one containing the #!) as an

argument to it. The attack works by making a link to a setuid shell �le and

invoking the program through the link. The link is then quickly pointed to a

malicious script. If the race condition succeeds, the malicious script is executed

because it is passed as the argument to the interpreter. Furthermore, the ma-

licious script is executed with the same user id as the owner of the original �le

(the �le with the #!) because exec uses the permissions on that �le to determine

the user id of the interpreter that is invoked when the �le is setuid. The timing

numbers below are purely illustrative. T.b is the time when command b is done

and so on.

a. ln setuid_shell_script FOO

b. FOO &

c. rm FOO (200ms<=T.c-T.b<=1s) #unlink FOO between 200ms

#and 1s of invoking FOO

d. ln any_shell_script FOO (T.d-T.b<=1s) #relink it within 1s

45

A pictorial representation of this pattern might look as shown in Figure 3.1,

which is a sequence of three actions: creation of an alias, execution, change of

the alias.

create an alias

to a file

execute a setid

shell script by in-

voking it

through an alias

change the alias

to point to an-

other script

Context: The aliases in box1, box2, and box3 are the same and the time
requirements are satis�ed.

Figure 3.1 A Race Condition Attack Represented as a Sequence Pattern

Other, similar examples of sequence patterns include:

� Race condition attacks in which a process running with elevated privi-

leges accesses an object. The process �rst checks (usually with the access

system call in UNIX) whether it is permitted access to the object without

elevated privileges and, if so, accesses the object. Because these two opera-

tions are not atomic when taken together, there is a window of opportunity

in which the process's notion of the object can be made to change. This

can result in unauthorized accesses to arbitrary objects in the system. An

example of this attack is the lpr attack2 discussed on the bugtraq [Bug]

mailing list by Jeremy Epstein on 10/21/94:

For example, if lpr checks whether you have access to a �le being

queued (using the access() system call), but lpd fails to verify that the

�le is still what it was before (i.e., if its a symbolic link it hasn't been

2A window of opportunity still remains between the time lpd makes its check, and accesses the
�le, but that is a replay of the same race condition at a lower level as the race condition between
the access check by lpr and printing by lpd.

46

changed, if it was a �le when spooled it hasn't become a symbolic link),

then you could get printouts of �les you have no rights to...

� Cert Advisory 93:18 [CER] which address a vulnerability in /usr/etc/m-

odload and $OPENWINHOME/bin/loadmodule in some Sun Microsystems,

Inc. architectures. In these architectures loadmodule runs as setuid root

without resetting IFS3. It calls a program with the absolute name starting

with /bin and does it using a call to system(). Because system() uses

the shell to parse its arguments, a program called bin can be invoked by

setting IFS and PATH4 appropriately. If a program called bin is in the

caller's path, it is executed as user root.

A simple signature for this vulnerability is to test every process when

it begins execution to ensure that the program the process corresponds to

resides in a trusted area if the process is executing with elevated privileges.

3. RE Patterns. These are extended regular expressions involving events and permit

the direct speci�cation of AND as a primitive to construct patterns. Synchro-

nization between subpatterns can be represented through the AND primitive.

Representability of regular expressions also provides the use of non-determinism,

repetition, and the use of alternation in pattern speci�cations.

Examples of these patterns include intrusion signatures that often specify sev-

eral activities to be done jointly, but in any order. Such signatures can be

written using the AND primitive. For example, attack scenario number four

described by Bishop [Bis83] provides a root shell by exploiting /bin/mail.

/bin/mail is the local mail delivery program that worked in earlier versions

of UNIX by changing the user id of the mail �le to that of the recipient's uid,

3IFS, or the internal �eld separator, is a user assignable variable in some user shells, such as the
Korn shell [BK89], that determines how an input line is separated into command words.

4PATH is a user assignable variable provided in most user shells that de�nes the search path to
look for commands to be executed.

47

but failed to clear the setuid bit on the �le. One attack script for exploiting

this scenario is the following, described by Koral Ilgun [Ilg92]:

cp /bin/sh /usr/spool/mail/root

chmod 4755 /usr/spool/mail/root

touch x

mail root < x

AND pattern features are required to represent this signature when translated
literally. touch is not related to cp and chmod, but must precede mail. The
pattern might be represented as

(touch AND (cp; chmod)); mail

where ; indicates sequence. This example is explained further in Section 4.1.

This category is a superset of sequence patterns.

4. Other Patterns. This category contains all other intrusion signatures that can-

not be represented directly in one of the earlier categories. Examples of these

patterns include:

� Patterns that require embedded negation. Matching negation patterns in-

volves searching through the entire search space for absence of match. For

example, it is not possible to directly specify in our hierarchy that a pat-

tern successfully match when a read followed by a write is not followed

by a close within �ve seconds.

Our interpretation of negation is \not followed by," instead of the greedy

match \anything but." Thus, in our interpretation, the regular expression

pattern abcd:� speci�es a not followed by bcd, followed by anything. This

pattern fails to match the input abcde in our interpretation. With a greedy

interpretation of matching, the pattern matches the input because in that

interpretation, the pattern speci�es a followed by anything except bcd,

48

followed by anything. This is easily realized in the input as ajbjcde, where

b matches bcd and cde matches :�.

Matching negation patterns requires an exhaustive search because NP-

Complete problems and their negation counterparts can be represented as

signatures. For example, the problem: does an arbitrary graph not have

a Hamiltonian cycle? If such signatures required less than an exhaustive

search for matching, we could derive clues to the problem NP = co-NP.

That, in turn, would provide clues to P = NP. Both are unsolved open

problems.

� Patterns that involve generalized selection. For example, to specify a suc-

cessful match if any x�3 out of x conditions are satis�ed, all possible ways

of selecting x�3 conditions out of x have to be represented in the pattern.

The relationship between the categories is shown graphically in Figure 3.2. The

categories from top to the bottom represent increasing representibility of intrusion

signatures. That is

Existence � Sequence � RE patterns � Other patterns

Interval and Duration are subsets of the category Sequence.

Existence

Sequence

RE Patterns

Other Patterns

DurationInterval

Figure 3.2 The Abstract Signature Classi�cation Hierarchy

49

3.1.3 Relevance of this Classi�cation

This classi�cation yields a categorization of intrusion signatures that is indepen-

dent of any underlying computational framework of matching. The classi�cation also

serves as the basis for instantiating any such computational framework. We have pop-

ulated this hierarchy with intrusion signatures [KS] and the majority of the intrusions

we studied were contained in the �rst three categories.

Using this classi�cation as the basis for a computational framework can be ap-

proached in two ways. Each category in the classi�cation can be treated independently

and a computational procedure devised that matches signatures in that category. This

yields disparate solutions to the matching problem in each category. Alternatively,

a uni�ed procedure can be devised in which all categories can be represented and

matched in one model. The approach taken in this dissertation is that of a uni�ed

model of matching, which is presented in Chapter 4.

While our focus in deriving this classi�cation has been to study exploitations

of vulnerabilities in the UNIX operating system, we contend that the hierarchy is

also valid for other operating systems. This point was presented in Section 1.4. If

operating systems have similar methods of exploitation, then the manifestations of

these exploitations in the audit trail are also similar. For example, race condition

attacks, which are present in many operating systems, are often of the same generic

type and may be modeled for detection as sequence patterns.

3.2 Intrusion Detection as Pattern Matching

In this section we show how pattern matching can be used to examine or monitor

for signatures in the audit trail. Our approach encodes signatures as a formal, struc-

tured representation of low-level system events that constitute the exploitation of

the attack. We show how this approach can be used with any underlying abstracted

event stream. We discuss the bene�ts of using pattern matching for detecting in-

trusions. We also discuss generic requirements that any intrusion detector using a

50

pattern matching approach must satisfy when run in the current paradigm of audit

trail generation.

3.2.1 Intrusion Signatures as Patterns to be Matched

To show the likeness of intrusion signatures and patterns in the sense of classical

pattern matching, consider the monitoring of Clarke-Wilson [CW89] integrity triples

in a computer system using the system generated audit trail. Clarke-Wilson triples

are devised to ensure the integrity of important data and specify that only authorized

programs running as speci�c user ids are permitted to write to �les whose integrity

must be preserved. This is similar to the maintenance of the integrity of the password

�le on UNIX systems by allowing only some programs, like chfn5 to alter it. One

pattern that might be used for this purpose associates and matches a sub-signature

for creating a process with another that writes to �les. By appropriately specifying

that the created process is the same as the one that writes, and retrieving the user id,

the program name and the �le name from the context of the match, one can monitor

Clarke-Wilson integrity triples by pattern matching. See Figure 3.3 for a pictorial

representation of the signature.

The approach of viewing intrusion signatures as patterns to be detected by match-

ing them against the audit trail has the following bene�ts:

Event Layout Independence. The pattern speci�cations do not include a description

of the layout of events. Instead, they import an event interface. A pattern

only needs to use what data an event can provide, regardless of how the event

provides it. This insulates the pattern speci�cation from layout variations in

the event stream. Because pattern speci�cations are declarative, a standardized

representation of patterns enables them to be exchanged between users running

variants of the same operating system, with varying audit trail formats. For

each such system the translation mechanism of converting the pattern to its

underlying matching automaton, and the encapsulation of the audit data within

5chfn is used to change informationabout users which is stored in a well-known �le, /etc/passwd.

51

the event interface is ported. Once this is done, signatures can be reused among

systems.

Declarative Speci�cation. Patterns representing intrusion signatures can be speci�ed

by de�ning what needs to be matched, not how it is matched. That is, the

pattern is not encoded by the signature writer as code that explicity performs

the matching. This permits sequencing and partial order constraints on events

to be represented in a direct declarative manner. The bene�t is the clean

separation of the matching from the speci�cation of what needs to be matched.

Dynamic Pattern Creation. Patterns representing attacks can be dynamically created

at the time of need. This facilitates complex matching requirements to be

speci�ed as a hierarchy of pattern matches. A pattern matched at a lower level

in this conceptual hierarchy can create and trigger the matching of a pattern

at a higher level thus permitting a layered structure of representing complex

matches. Furthermore, patterns tailored on conditions only known at runtime

can be created.

Event Source Independence. As the pattern matching process only makes use of the

event interface visible to it, events that correspond directly to underlying sys-

tem events or those that are arti�cially generated can be used the same way.

Synthetic events can be generated and used by augmenting the event interface

with a description of these events. The interpretation of these synthetic events

can be made completely application dependent, being done by the particular

patterns that make use of them.

Multiple Event Streams. Multiple event streams can be used together to match a-

gainst patterns for each stream without the need for combining the two into

one stream. For example, IP datagrams and C2 audit events can be handled

together to corroborate evidence of intrusion. As no assumptions are made

about the nature of these event streams, this mechanism can be naturally used

52

to process multiple sources of the same event type, for example in distributed

intrusion detection.

Portability. Intrusion signatures can be moved across sites without rewriting them to

accommodate �ne di�erences in each vendor's implementation of the audit trail.

Because pattern speci�cations are declarative, a standardized representation of

patterns enables them to be exchanged between users running variants of the

same
avor of operating system, with varying audit trail formats.

3.2.2 The Nature of Intrusion Signatures

In this section we outline the general, abstract requirements that pattern speci�ca-

tions must incorporate to represent the full range and generality of intrusion scenarios.

These requirements were derived from a study of computer security vulnerabilities de-

scribed in Bishop [Bis83], CERT advisories [CER], and the COPS security tool [FS90].

The examples are illustrated using UNIX vulnerabilities and a C2 audit trail. This is

only because of our familiarity with them and should not be construed as a limitation

of this approach.

Context Representation. The patterns must be able to represent the context essential

to accurately specify an intrusion. The more accurately one can specify an intru-

sion, the more one can limit false positives and unwanted matches. The context

includes the pre-condition(s) that may need to be satis�ed before matching the

event group speci�ed by the pattern. The pre-condition veri�es that the system

is in a state from which the set of actions carried out as speci�ed in the pattern

result in an intrusion. Some signatures may not require a pre-condition.

The other type of context involves expressions on the values of event �elds.

These values may be taken from more than one event. For example, when

encoding Clarke-Wilson triples as patterns, one needs to remember the user

id and the program name associated with every process spawned to match it

against every write (or open for write) to ensure that only those writes to �les

53

that are permitted by certain programs executing on behalf of certain users

occur. Figure 3.3 shows this pictorially.

A PROGRAM STARTS UP A PROCESS WRITES TO A FILE

PR = this program's name F = this �le's name
PID = this process's pid PID0 = this process's pid

UID = this process's uid

Context: PID = PID0 ^ Clarke-Wilson access triples do not permit
PR running as user id UID to write to �le F.

Figure 3.3 Monitoring Clarke-Wilson Triples as a Pattern Match

As another example of the use of signature contexts, consider the representation

of the signature: Raise the audit level of any user for whom there are three

or more failed login attempts within two minutes. The block diagram of the

signature might look as shown in Figure 3.4. The sequence of failed logins as

depicted implies that t3 � t2 � t1.

FAILED LOGIN FAILED LOGIN FAILED LOGIN

user = U user = U 0 user = U 00

time = t1 time = t2 time = t3

Context: if(U == U 0 == U 00 ^ t3 � t1 < 2m)raise audit level(U);

Figure 3.4 Three Failed Login Attempts as a Signature

54

Matching in the presence of context is more di�cult than matching where only

the order of occurrence of events is speci�ed, as in regular expression matching

[AHU74]. If the evaluation of the context is linear in its size (of representation)

then matching is NP-Complete [KS94]. This means that in general there are

no known deterministic algorithms that perform signi�cantly better than trying

all possible ways of matching the pattern.

Follows Semantics. The patterns must intrinsically specify the following special case

of discrete approximate pattern matching: if the event sequence e1;e2;: : : ; en

matches the pattern, then so does e1;[x11; x12; : : : ; x1l];e2;[x21; x22; : : : ; x2m];: : : ;en,

where xij are arbitrary events. That is, the insertion of an arbitrary number

and type of events between any successive events of a matching event sequence

continues to render the pattern matched. We refer to this specialization as

matching with the follows semantics. If this problem is framed in terms of the

edit distance of converting the input to the pattern, with deletion costs = 0,

insertion costs = mismatch costs = 1, it is to determine if the minimum cost of

converting the input to the pattern is 0. This requirement is justi�ed when one

considers how event streams (e.g., audit trails) are generated in modern com-

puter systems. Multiple sources of events, for example from several processes,

overlap in the �nal event trail. Because event trail managers (a process) usually

collect and write events in the order in which they are received, a single logical

thread of events, for example one associated with a process, is interspersed with

events belonging to other active entities in the system.

Discrete approximate matching has been extensively studied by Wagner and

Fischer [WF74], Myers and Miller [MM89], Yates and Gonnet [BYG89], Man-

ber and Wu [WM91] and Knight [Kni93]. Matching with the follows semantics

55

without context representation has the same complexity as matching regular ex-

pressions. This has a linear time solution in the deterministic case (ignoring pre-

processing) and polynomial time solution when simulating the non-deterministic

pattern. These results can be found in the book by Aho et al. [ASU86].

Speci�cation of Actions. The patterns should be able to specify the execution of ar-

bitrary code fragments, both within the pattern's context and when the pattern

is matched. For example, it might be desirable to increase the amount of data

audited for a user when a suspicious pattern is matched. Some generic mecha-

nism for specifying such actions must be provided without needing to enumerate

a priori all the special functions that might be needed for this purpose. Fix-

ing the set of functions that can be used within a pattern when the model of

matching is designed is di�cult. It is also too restrictive to the pattern writer

to work with a �xed set of functions in writing patterns. A general mechanism,

for example one based on a virtual machine model that allows complex, user

speci�able functions to be constructed from a small, simpler set of instructions,

is more desirable. Such a mechanismmight also be used to query the system for

state information, changing the event trail manager, or to e�ect state changes

in the system itself.

Consider the Clarke-Wilson example of Figure 3.3. The mechanism of storing

the CW-triples and checking them against the pattern context can be speci�ed

using a function that takes the program name, the user id, and the �le name

as arguments and determines if it is an allowed triple. The function declaration

for such a function might look like:

//return 1 if triple not permitted, 0 otherwise

int disallowed(String prog, int uid, String file)

Representation of Invariants. The following special types of patterns must be easy to

represent: p1 ^ p2 ^ p3 ^ : : : In other words, the pattern is considered matched

56

if a sequence of events e1; : : : ; en satis�es p1 but does not satisfy p2; p3; : : : This

often allows operational details of matching (like garbage collection of partially

matched signatures that will never completely match) to be speci�ed by the

pattern writer without needing to build such mechanisms into the matching

solution. This provides
exibility and control to the pattern writer in cases

when built-in behavior is ine�cient or simply does not provide the mechanism

to express the special cases for a particular pattern in which partial matches

can never be fully matched.

For example, in the example of Clarke-Wilson triples, one would like to specify

that if a process fails to write to a �le (or open a �le), then the partial match

that matches the spawned process but awaits the write should be destroyed

because the match will never complete once the process has exited. Rather than

bind such detailed behavior into the matching solution we �nd it conceptually

simpler for the pattern writer to encode it as part of the pattern itself. The

pattern speci�cation would then look like: match the spawning of a process and

its subsequent writing to a �le so long as the process has not exited.

We are not particularly concerned here with the theoretical completeness of

this approach of specifying all conceivable situations in which partial matches

can be fruitfully deleted. Based on an empirical study of intrusion signatures

we view this mechanism to be su�cient. Our inclination between e�ciency

and generality is towards e�ciency. We have attempted to devise constraints

for a model that can represent and e�ciently match a large proportion of the

common cases (which is inextricably tied to empiricism), and not to devise a

general-purpose solution in which every possible condition can be represented

and matched.

57

3.2.3 System and Other Considerations

In addition to the model requirements presented in the previous section, we have

found it useful to place additional constraints on a particular instantiation of the

model [KS95]. These can be viewed as system constraints on the �nal packaged

misuse detector. These constraints attempt to answer the question: if we could

devise a model of matching that met the requirements of Section 3.2.2, how would we

structure a system around it? What would be desirable characteristics of the model

and the system? We believe the following to be some of those desirable characteristics.

Dynamic addition and removal of patterns. This is the ability to add and remove pat-

terns to be matched as the matching proceeds. This ability serves several useful

purposes. For example, it enables the short-lived instantiation of specially tai-

lored patterns to con�rm or deny evidence in model-based intrusion detection

[Section 2.3.5]. Or, it might allow coarse patterns to generate successively more

re�ned patterns to con�rm or deny intrusive activity once they are matched.

This ability also provides more control to a security o�cer in charge of securing

the system. He can weed out unnecessary or unuseful patterns and add new ones

to the system without bringing down the system and re-starting it. There are

added bene�ts of easier testability and the signi�cant capability of embedding

mechanisms for the automated generation of newer, better signatures by one of

several techniques including genetic algorithms [Koz92].

Incremental Matching. By this we mean that the events in the event stream are made

available one at a time and the matcher must indicate all successful matches

after each given event. In other words, all the events are not available a priori

for preprocessing. This requirement often makes the matching solution compu-

tationally di�cult. In addition to incremental matching we have found it useful

for the matching to be online, i.e. matching is done concurrently with the gener-

ation of events. This is because signature context often requires the availability

of system state information which is usually meaningless in an o�-line solution.

58

Prioritization of Patterns. In the case of several patterns it must be possible to give

matching preference to some patterns over others. This requirement is one of

proper distribution of limited computing resources. If the matching of events

against patterns proceeds at a rate faster than the event generation rate, pri-

oritization may not be necessary. But, in a setting in which the monitored

machine and the event processing machine are the same, it might be desirable

to temporarily disable some patterns so that matching proceeds more rapidly

for the remaining patterns.

All Matches. The matching solution must provide for all matches of all patterns in

the system. From a security perspective, it is often more desirable to know all

the speci�c violations rather than knowing that a violation has occurred, or

knowing the �rst violation as soon as it occurs.

From the enumeration above we have ignored performance requirements such as ef-

�ciency or real-time behavior, low resource overhead, and scalability of the solution

with respect to the number of patterns to be matched simultaneously. These are

important requirements but good values of these measures cannot be quanti�ed in-

dependent of the speci�cs of the environment in which the detector will run.

3.2.4 Further Advantages of a Pattern Matching Approach

There are several added bene�ts of viewing misuse detection as a pattern matching

solution. By considering intrusion signatures as patterns, the audit trail as an ab-

stracted event stream, and the detector as a pattern matcher, we can cleanly separate

the major components of a generic misuse detector. This enables di�erent solutions to

be substituted for each component without changing the overall engineering structure

of the system considerably. The event stream encapsulates the syntactic and data

representation di�erences present in various audit trails. Semantic di�erences may be

more di�cult to subsume without changing the signature. Because matching is done

on the information contained in the events, of which the matcher has no information,

59

any abstracted event stream will do, for example network packets. This makes the

system more portable. Furthermore, if the pattern representation is standardized,

patterns can be distributed to other sites which may run a di�erent version of a sim-

ilar operating system and a di�erent version of the audit trail. Each site need only

write a structural description of the audit trail once for all its patterns.

A simpli�edmisuse detector can then be an application program that uses a mech-

anism to dispatch incoming events to patterns and uses calls to a pattern matching

library to do the matching of those patterns. This means that building misuse detec-

tors no longer requires learning specialized tools, techniques, and theories before using

them as building blocks for a misuse detector. It can be as simple as understanding

and using a matching library.

Pattern matching has been extensively studied as a discipline. It is amenable to

several optimizations that can make a system built around it practical and e�cient.

For example, the evaluation of context is amenable to compiler optimization tech-

niques. It might also be possible to combine several patterns together into a joint

pattern with better matching characteristics. The use of pattern invariants allows the

pattern writer to encode patterns that do not need to rely on primitives built into

the matching procedure to manage the matching. One example is the ability to clean

up partial matches once it is determined that they will never match. This frees the

matching subsystem from having to provide a complete set of such primitives and,

in the process, coupling the semantics of pattern matching with the semantics of the

primitives.

Conceptually, patterns representing vulnerabilities in our model subsume static

methods of intrusion detection such as those incorporated in tools such as COPS

[FS90] and TIGER [SSH93]. By specifying that a pattern does not match events but

instead satis�es a context when created, all the checks that these tools make can be

veri�ed. Thus, we can encode tests that not only verify that the system is initially

clean but also continues to remain so as the system continues to function.

60

This approach is, then, limited only by the expressive power of the patterns and

the computational intractability of matching imposed by their generality. Within the

framework of the outlined model, patterns can be designed to perform tasks beyond

the traditionally de�ned domain of misuse detection. We believe that with a well

designed model for representing patterns, simple anomalies can also be represented

and detected in this framework.

3.2.5 Disadvantages of a Pattern Matching Approach

Given a well constructed pattern that represents an intrusion scenario it might not

be too di�cult to match it against the event stream. A di�cult problem, however,

is the identi�cation and extraction of the core crucial elements from exploitation

descriptions, such as those described in the bugtraq [Bug] and 8lgm [8lg] mailing lists,

and turning them into general descriptions for detecting variations and permutations

of the vulnerabilities. Currently it requires human expertise to do the translation

and there is no easy way to automate the process. Abstracting high quality patterns

from attack scenarios is much like extracting virus signatures from infected �les. The

patterns should not con
ict with each other, be general enough to capture variations of

the same basic attack yet accurately represent the intrusion to reduce false positives

and false negatives, and be simple enough to keep the matching computationally

tractable.

While this technique only works for vulnerabilities that are known and for which

patterns have been devised, it is the case that newer vulnerabilities are often di�erent

ways of exploiting well-known problems in system software. This approach examines

the trace of a running system for `behaviors' in an attempt to monitor suspicious be-

havior. A well written signature can reduce the e�ects of aliasing so that it is possible

to represent the crux of an intrusion that is unchanged by minor rearrangements of

the exploitation scenario and is insensitive to the path taken to e�ect the intrusion.

Signature analysis assumes the integrity of event data. Thus, attacks that involve

spoo�ng, which produce the same events (but from an untrusted source) cannot be

61

reliably detected. Furthermore, passive methods of security breaches such as wire-

tapping cannot be detected at the time of the breach because they do not produce a

detectable signature.

3.3 Summary

In this chapter we presented a scheme to represent intrusion patterns based on

the complexity of matching. Because representation of context is fundamental to

the representation of intrusion signatures, our classi�cation assumes it at each level

of categorization. Most of the intrusions we studied can be represented in the �rst

three categories of our classi�cation. These categories serve to group signatures, not

vulnerabilities. Di�erent encodings of the same security vulnerability can be made

based on the desired accuracy of detection, resulting in a corresponding tradeo� in

the complexity of detection. We believe this categorization is also applicable to other

operating systems.

We also outlined requirements that must be satis�ed by a pattern matching solu-

tion if the monitoring of intrusion signatures is to be done using pattern matching.

Di�erent intrusion detection systems may make di�erent tradeo�s among these re-

quirements but all systems will have to address all the requirements to some degree.

These requirements were empirically derived from a study of commonly occurring in-

trusions described by Bishop [Bis83], made public via advisories such as those put out

by CERT [CER], and embedded in tools like COPS [FS90]. We also outlined some

system considerations that might be useful when implementing these requirements in

a practical system.

The pattern matching approach should be viewed as a technique speci�cally tai-

lored for intrusion detection. Thus, the pattern requirements are not intended to

provide a general-purpose audit trail analysis because we are not primarily concerned

with the speci�cation and matching of every conceivable interrelationship among

events. Instead, we want to provide a mechanism that is simple and e�cient, and

permits the speci�cation of a large percentage of intrusions.

62

For e�ective misuse detection, a pattern matching approach sometimes requires

the use of facilities that are not currently provided by protection mechanisms and

audit trails available on computer systems. Our technique assumes the availability

of these facilities. For example, we implicitly assume that for proper detection of

intrusions, complex programs with a history of bugs generate a high-level audit trail

that can be used for this purpose.

63

4. A MODEL INSTANTIATION

In Section 3.1 we presented a classi�cation hierarchy to categorize intrusion sig-

natures based on the structural interrelationship among events used to represent the

signatures. In Section 3.2 we presented the requirements that patterns in all cate-

gories of the classi�cation must meet to represent the full range of commonly occurring

intrusions. These requirements included the speci�cation of context, actions, and in-

variants in intrusion patterns. In this chapter we present a model of matching that

we have devised for misuse intrusion detection that is a synthesis of the classi�cation

hierarchy and the generic pattern requirements. Signatures devised using this model

can use context, actions, and invariants and span all classes of the hierarchy.

The model is based on Colored Petri Nets, described by Jensen [Jen92]. Each

intrusion signature is represented as a Colored Petri net. The notion of one or more

start states and exactly one �nal state in the net are used to de�ne matching in the

model. Context is saved as the colors of a token. Matching by de�nition speci�es

the \follows" semantics. Conditions are speci�ed using guard expressions and actions

are represented using state actions. The theoretical properties of this model are

studied in Chapter 5. We have built a prototype of the model in C++ and tested it

with intrusion signatures derived from real vulnerability data. The structure of the

prototype and the simulation results are presented in Chapter 6.

4.1 The Model

In this section we introduce the model informally with an example. In Section 4.3

we de�ne the model more rigorously. We have translated the example exploitation

used in this section into a pattern literally, but that is only to highlight the various

64

features of the model using the fewest examples. Examples of some intrusion signa-

tures that we used to test the prototype are given in the appendix. Consider the

representation of the following attack scenario that was brie
y explained in Section

3.1.2.

cp /bin/sh /usr/spool/mail/root

chmod 4755 /usr/spool/mail/root

touch x

mail root < x

This attack exploits the vulnerability in early versions of /bin/mail and the

weakness in the structure of the mail delivery subsystem. /bin/mail is a local mail

delivery program that delivers mail to local mailboxes. It worked in early versions of

UNIX by changing the user id (owner) of the recipient's mailbox �le to the recipient's

user id, but failed to clear any other permission bits on the �le. An attacker could

exploit this behavior by waiting for user root's mailbox to be empty and then copying

/bin/sh to root's mailbox �le. This was possible because the system wide mail

directory /usr/spool/mail was writable by everyone. Because the newly created

mailbox �le was owned by the attacker, he could set its setuid bit. In the �nal step

of the exploitation, he would simply mail an empty message to root that /bin/mail

would append to the mailbox �le and change the �le ownership to root. Because

/bin/mail does not check or reset any other bits on the mailbox �le the attacker

then had a setuid root shell.

A literal representation of this attack is represented graphically in Figure 4.1. The

horizontal chain of circles (states) and vertical bars (transitions) encode the activity

cp /bin/sh /usr/spool/mail/root

chmod 4755 /usr/spool/mail/root

while the diagonal chain encodes the activity

touch x

The transition labeled t7 represents a synchronization point at which both chains

must have matched for the pattern to be matched further. In describing the pattern

65

graph we refer to it as a Colored Petri Automaton, or CPA. When referring to circles

in a CPA, we use the notation of \state" over \place" because that is closer to the

more familiar �nite state automata terminology.

write

this[PID] != 0 &&
this[OBJ] =

"/usr/spool/mail/root" &&
FILE = this[OBJ]

chmod exec
this[OBJ] = FILE true_name(this[PROG]) =~ ".*mail" &&

 this[ARGS] =~ "\broot\b"

cp /bin/sh /usr/spool/mail/root
chmod 4755
/usr/spool/mail/root
touch x
mail root < x
/usr/spool/mail/root

s1 t1 t2s2 s3

stat

utime

s4

t4

s5

t5

s6
t7 s7

F = true_nam
e(this[OBJ])

Figure 4.1 Representing Synchronization of Events

The circles in Figure 4.1 represent system states and the thick bars the transitions.

s1 and s4 are the initial states of the CPA, and s7 is its �nal state. A CPA requires

the speci�cation of � 1 initial states and exactly one �nal state. A start state must

have no arcs incident on it, and a �nal state must have no arcs emanating from it.

At the start of a match, a token is placed in each initial state.

A CPA may have a set of variables associated with it. Assignment to these

variables is equivalent to their uni�cation. This means that variables can be assigned

a unique value only once. Attempting to assign di�erent values to a variable causes the

assignment to fail. It also means that variable assignment need not only be speci�ed

as var = val, but may also be speci�ed as val = var. Assignment and testing for

equality between variables or between variables and values is the same operation.

This particular semantics of CPA variables is useful in optimizing the evaluation of

66

guard expressions [Section 5.3]. It also permits precomputing the values of variables

at certain nodes of the CPA because of their assignment at earlier occurring nodes of

the CPA.

Each token maintains its own local copy of these variables because each token can

make its own variable \bindings" as it
ows from a start state to the �nal state. In

CP-Net terminology, each token is colored, and its color can be thought of as an n-

tuple of strings, where the pattern has n variables. In Figure 4.1, variables FILE and

F are CPA variables. We use CPA variables synonymously with token local variables

because the model uses token colors to represent CPA variables.

A CPA also contains a set of directed arcs that connect states to transitions and

vice-versa. Each transition is associated with an event type, called its label, which

must occur in the input event stream before the transition will �re. In Figure 4.1,

transition t1 is labeled with the eventwrite, t4 is labeled with the event stat and so on.

The labels correspond directly to the event types against which the CPA is matched.

The model provides for a special label CLK that corresponds to timer events. Timer

events are useful in specifying time bounds for matching or for specifying periodically

occurring activity. Transitions may also be labeled with � to indicate that tokens may

ow across the transition without being triggered by an event. An � transition cannot

change the variable binding of tokens that cross it. Nondeterminism can be speci�ed

by labeling more than one outgoing transition of a state with the same label, or with

� events. An event can �re multiple transitions labeled with that event. This permits

matching patterns with the AND semantics. Precluding this concurrent behavior would

specify pattern matching with partial order semantics. This is discussed further in

Section 4.2.3. A transition is said to be enabled if each of its input states contain at

least one token.

Optional expressions or guards can be placed at transitions. These expressions

permit assignment to the token local variables that
ow past the transition. Examples

of these expressions include assignment of event data �elds to token local variables;

evaluation of conditions involving =, <, or >; and calling built-in and user de�ned

67

functions. Guards are boolean expressions that evaluate to true or false. this is

a special operator that is instantiated to the most recent event. Event data can

be accessed through the this operator. Expressions involving this use the array

indexing operator [] to refer to data from the current event. In Figure 4.1, transition

t2, which is labeled by the event chmod, accesses the OBJ �eld of the CHMOD event,

which returns the pathname of the object being chmoded. Guards are evaluated in

the context of the event which matches the transition label and the set of consistent

tokens that enable the transition. Tokens are consistent when their variable bindings

unify. The set of tokens are uni�ed before being used in the guard expression for

evaluation.

For example, for transition t7 to �re, there must be at least one token in each of

states s3 and s6; the enabling pair of tokens (one from s3, the other from s6) must

have consistently bound (uni�able) variables; and the uni�ed token and the event of

type exec together must evaluate the guard at t7 to true. A transition �res if it

is enabled and an event of the same type as its label occurs that satis�es the guard

at the transition. When a transition �res, the set of consistent tokens are uni�ed

to one token, and copies of this uni�ed token are placed in each output state of the

transition. A state s is an output state of transition t if there is a directed arc from

t to s. For example, in Figure 4.1, the only output state of t2 is s3.

The process of uni�cation resolves con
icts in bindings (i.e., ensures that token

bindings, if present, are identical) between tokens to be uni�ed and stores a complete

description of the path that each token traversed in getting to the transition. Thus,

a token not only represents binding, but also the composite path that it encountered

on its path to the current state.

The event sequence matched by a CPA is the sequence of events (or other ordering)

encountered at each transition by the token that has reached the �nal state.

The states of a CPA can also be associated with actions. These actions are

performed for each token that reaches the state. Actions allow the speci�cation of

activity to be made before the entire pattern is matched. This allows the encoding of

68

countermeasures when a partial signature is recognized. Actions can also be used to

invoke built-in primitives, for example the recursive invocation of the same pattern,

or resetting the pattern.

Invariants, or conjuncted negative speci�cations, are speci�ed using their own

graphs. These graphs are similar to pattern graphs and are matched in the same

way. For each token that reaches the successor state of the CPA start state, its copy

is placed in the start state of the invariant graph. A match of the invariant graph

nulli�es the pattern match. This is elaborated further in Section 4.2.1.

The model has a built-in operation RESTART. When executed, it removes all tokens

from the CPA and its invariants and reinitializes the CPA by placing new tokens in

its start states. This operation is useful when a pattern match collects data for a

period of time, at the end of which matching is reinitiated.

4.2 An Example Simulation

As another example, consider the pattern shown in Figure 4.2.

a b c

s1 t1 t2s2 s3 t7 s7

s4

t4

s5

a

Figure 4.2 Simulation of a Pattern That Does Not Use Guard Expressions or
Token Local Variables

69

Assume that we want to match the pattern against the event sequence abac.

The steps in the non-deterministic match of the CPA against the event sequence are

described in Table 4.1. Non-deterministic matching is used in the sense of computing

using an oracle, similar to that used in matching non-deterministic �nite automata

as described by Aho, Hopcroft and Ullman [AHU74].

Step Input Token Con�guration Comment
1: :abac fs1; s4g
2: a:bac fs2; s4g The CPA non-deterministically chooses

to move token s1.
3: ab:ac fs3; s4g
4: aba:c fs3; s5g
5: abac: fs7g The two tokens are merged to one.

From the token in s7 we can recon-
struct the path of each individual token
from the initial marking.

Table 4.1 Non-deterministic Matching of a CPA

Merging of tokens s3 and s5 occurs in step four and this requires con
ict resolu-

tion. Because tokens associated with this pattern do not have variables, tokens unify

trivially. This example illustrates how the CPA non-deterministically matches the

pattern. In non-deterministic matching, tokens are removed from one or more states

and placed in others, and the matching procedure always makes the right choice in

the selection of tokens and transitions to exercise.

In a deterministic, exhaustive search on the other hand, tokens are never moved

from one state to another, they are instead duplicated and copies moved to other

states. Because tokens are colored, i.e., they have data bindings associated with them,

each token is in a sense unique. Therefore, tokens residing in the same state cannot be

merged. Furthermore, it is not permissible to lose the binding of a token by moving it

across a transition, instead the previous binding must be preserved for a later match,

70

and a duplicate created and placed in the output state of the transition. A determin-

istic simulation of the same pattern is shown in Table deterministic-matching-of-cpa.

The superscripts associated with states denote the number of tokens in the state. The

simulation procedure is described in Section 6.4.2.

Step Input Consumed Token Con�guration

1: :abac fs1; s4g

2: a:bac fs1; s2; s4; s5g

3: ab:ac fs1; s2; s3; s4; s5g

4: aba:c fs1; s22; s3; s4; s52g

5: abac: fs1; s22; s3; s4; s52; s7g

Table 4.2 Deterministic Matching of a CPA

4.2.1 The Semantics of Invariants

An invariant graph is similar to an ordinary pattern graph. If P denotes the

pattern and I its invariant, then a negative invariant graph represents the condition

P ^ I. That is, if P is matched by a sequence of events e1; : : : ; en (with the follows

semantics), then e1; : : : ; en does not match the invariant graph. Negative invariants

are usually used to specify when it is no longer useful to continue searching for a

match. This way tokens can be destroyed to prevent build up of unnecessary tokens

in a pattern graph. The rule for token destruction is:

When any token in I reaches the �nal state, it is destroyed along with the

tokens in the pattern and the invariant that have the same root token.

71

Two tokens have the same root token if both are the result of duplicating tokens that

themselves have the same root token. A token is its own root token. See the appendix

for implementation details on how this is done.

4.2.2 CPA Variable Semantics

As mentioned earlier, token local variables cannot change values once initialized.

Global variables that need to be shared across CPAs must be provided by the external

environment. These variables can be manipulated by either guard expressions or

pattern actions. Concurrency control of accessing shared variables must be handled

external to the model.

4.2.3 Partial Order or AND Matching Semantics

In choosing partial order semantics for matching a CPA against an event sequence,

any event is restricted to exercise at most one transition. In choosing to match with

the AND semantics, all transitions labeled with that event must be exercised.

When a CPA has at most one transition labeled with any given event, matching

with either semantics yields the same matches. In our experience, intrusion patterns

can either be naturally represented as AND patterns, or can be judiciously encoded

in this manner. The simulation procedure for matching with the AND semantics is

a straightforward extension of the simulation procedure for non-deterministic �nite

state machines. Thus, our choice of matching semantics for the CPA is that of AND

semantics.

The basic CPA model of matching can be extended to match with partial order

semantics if that is needed for intrusion signatures.

4.3 Formal De�nition of a CPA

This section presents a formal description of Colored Petri automata that was

informally introduced in the previous section. We de�ne its operational semantics

72

in terms of updates to its internal state as it performs the match against the event

stream.

Let � be the �nite set of event types over which matching is performed. The

event stream consists of a sequence of zero or more events. Each event type � 2 �

has a �xed set of attributes associated with it [cf. Section 1.3]. Let these be labeled

a�1 : : : a
�
l where l depends on �. The set of attributes may be di�erent for each � 2 �.

Each instance of an event of type � in the event stream may have di�erent values for

its attributes. By �� we denote a sequence of zero or more events. If e denotes an

event, then by Label(e) we denote the type of e.

A Colored Petri automaton M that matches over an event sequence in �� is the

11-tuple (S; T; V;B;E;G; I;O; Si; F;N) where:

� S is the set of states of M .

� T is the set of transitions of M . The set of states and transitions are disjoint,

i.e., S \ T = �.

� V is the set of CPA variables, also referred to as token local variables. These

variables de�ne the color of tokens associated with M .

� B is the global state that can be manipulated by M . The global state is a set

of (variable, value) pair bindings.

� E is the labeling function E : T ! �[f�g[fCLKg that labels each transition

with an event type.

� G is the labeling function G : T ! X�;V that maps each transition to a guard

expression. X�;V is the set of valid boolean expressions that only use the data

attributes associated with the event �, the CPA variables of M , and the global

state B.

� I is the set of directed edges that connect states to transitions, i.e., I : S ! 2T .

2T denotes the power set of T , i.e., the set of all subsets of T .

73

� O is the set of directed edges that connect transitions to states, i.e.,O : T ! 2S .

2S denotes the power set of S, i.e., the set of all subsets of S.

� Si 2 S is the set of start states of M . No start state has an incoming edge, i.e.,

8s 2 Si; I(s) = �.

� F 2 S is the �nal state ofM . The �nal state has no outgoing arc, i.e.,O(F) = �.

� N is the invariant associated with M . N is a CPA graph similar to M except

that (1) N does not have an invariant associated with it (2) there is exactly one

start state in N and (3) all transitions in N have exactly one input state i.e.,

synchronization (direct speci�cation of AND) is not permitted in invariants. N

is represented by the 10-tuple (SN , TN , V , B, EN , GN , IN , ON , SNs, FN).

N shares the same variable space V and the global state B as M .

A token k associated with M (and N) is de�ned as the bindings over the set of CPA

variables V of M . For each variable v 2 V associated with a token, v either has a

value, or is uninstantiated, denoted here by the value �. The vth variable binding of

token k is denoted as kv. Two or more tokens k1; : : : ; kn are said to unify i�

8v 2 V;
�
8np=1

�
8nq=1

�
(kp)v = (kq)v

���

A token variable value � is equal to any value. The bindings of the uni�ed token,

denoted here as Unify(k1; : : : ; kn) that is the result of unifying the tokens k1; : : : ; kn

is

Unify(k1; : : : ; kn)v =

8><
>:

lv if 9 a token l j lv 6= �

� otherwise
; v 2 V

We denote by TE the bag (multiset) of all possible token values associated with M .

That is, each element of TE is a token with an arbitrary binding for its variable set

V .

A marking � is the function � : S [SN ! TE that assigns tokens to the states of

the CPA M and its invariant N . The initial marking of M consists of exactly one

74

token with no bindings, i.e., 8v 2 V; kv = �, in each of its start states s 2 Si and no

tokens in any other state.

By the function In(t); t 2 T [TN , we denote the set of states s 2 S [SN j 9 a

directed arc from s to t. Similarly, we use the function Out(t); t 2 T [TN to denote

the set of states s 2 S [SN j 9 a directed arc from t to s. The function NonZero(s)

is true i� the state s 2 S [SN has no tokens resident in it. The function Zero(s)

is the complement of the function NonZero. The function State(k) returns the state

s 2 S [SN in which the token k is resident.

The transition function � : (�; e) ! �0 takes a marking and an input event, and

returns a new marking that represents the new state of M after it has been exercised

with e. � may �re a transition t 2 T [TN if:

� E(t) = Label(e), and

� t is enabled, i.e., there is at least one token in every input state of t, i.e.,

8s 2 In(t); NonZero(s), and

� If x = jIn(t)j, then 9 a set of tokens k1 : : : kx j

(State(k1) 6= � � � 6= State(kx)) ^
�
8xp=1State(kp) 2 In(t)

�
^ k1 : : : kx unify

Let k = Unify(k1; : : : ; kn).

� The uni�ed token k satis�es the guard at t i.e.,G(t) evaluates true in the context

of e, B, and k. By this we mean that all the CPA variable references in G(t)

are found in k, the event data are found in e and all the other references are

found in B.

Note that use of the term \may �re" implies non-determinism. That is, the satisfac-

tion of the conditions listed above are necessary, but not su�cient. The de�nition

also implies concurrency, i.e., any subset of transitions that satisfy these conditions

may �re, or that a transition may �re more than once.

Upon �ring t, the tokens k1 : : : kx are removed from their respective states and

the uni�ed token k is placed in all the output states of t, i.e., 8s 2 Out(t) (when an

75

invariant transition �res, tokens do not unify because In(t) = 1 8t 2 TN .) These

tokens may further transit non-deterministically across � labeled transitions. For the

special case when any input state of t 2 T is a start state ofM , i.e., 9p 2 In(t) j p 2 Si,

k is duplicated and its copy is placed in the start state of the invariant, i.e., in SNs.

The transition function � is de�ned for a sequence of events as the successive

compositions of �. That is,

�(�; e1 : : : en) = �(�0; e2 : : : en); �
0 = �(�; e1)

A sequence of events � = e1; : : : ; en is recognized by M i� NonZero(F) in the

marking �(�) but Zero(NF) in all possible �(�). This realizes the conjuncted nega-

tion semantics of invariants.

4.4 Realizing the Intrusion Classi�cation in this Model

This section describes how the abstract classi�cation scheme presented in Section

3.1 �ts the model of matching presented in this chapter. The category of RE patterns

in the classi�cation can be split further in our matching model. Other categories

more or less directly correspond to particular structures in the CPA model. Because

the CPA model permits side-e�ect operations through actions, the catch-all category

of \other" patterns can easily be simulated through manipulations of global state via

actions. The precise de�nition of a high-level event that was unspeci�ed in Section

3.1 is de�ned here.

1. Existence. This is de�ned in our model by specifying a guard expression to be

evaluated when the pattern is instantiated. Instantiating a pattern is imple-

mentation-dependent. Our implementation technique is presented in Chapter

6.

2. Sequence. The de�nition of a \thing" [cf. Section 3.1.2] is modeled in graphical

terms as a DAG with two dominating states, one with no input arcs (referred

to as the input dominating state) and one without any output arcs (referred to

76

as the output dominating state). Furthermore, the maximum number of input

and output states of any transition in the \thing," including � transitions, is

constrained to one.

A sequence then is a concatenation of \things" where the input dominating state

of all high-level events except the �rst is the same as the output dominating

state of the previous high-level event.

For example, to specify the high-level action of writing to a �le, one can look

for all possible ways of opening a �le with the write
ag speci�ed to the open

system call. The example in the sequence pattern of Figure 4.3 speci�es the

concatenation of two \things," a read followed by a write.

R

W

WT

WC

WTC

R

W

WT

WC

WTC

+ =

Figure 4.3 A Sequence Pattern of Read Followed by Write

A sequence is a concatenation of \things" with the output dominating state of

one thing being the input dominating state of the next thing.

Because the amount of duplication of tokens in the pattern on exercising each

event is at most two, the maximum number of tokens in the pattern after m

events is 2m. The number of tokens in the pattern is a measure of the upper

bound time complexity of exercising the pattern with an event. Thus, the total

time to exercise the pattern with m events is

1 + 21 + 22 + � � � + 2m�1 = O(2m)

77

RE Patterns. This category can be split further in our matching model into bounded

and unbounded output nets.

Bounded Output Nets. These are general nets (need not be DAGS) without

AND synchronization in which the maximum number of output states of

any transition, including � transitions, is bounded by a constant c, and the

number of input states of all transitions is one. With these restrictions,

the amount of duplication of tokens in the pattern is bounded by c for any

event. Thus the maximum number of tokens in the pattern with n states

after observing m events is cm and the total time to exercise a bounded

output net with m events is O(cm).

An example of this pattern is the result of trying to represent unauthorized

transitions to root. This detects cases in which the user id of a process

changes without an intervening authorized method (for example, in UNIX,

a call to setuid) of changing the user id. The kernel long divide emulation

code in some Sun operating systems that failed to check the address of the

remainder may be detected using such a signature [CER, CA-92:15]. A

simplied signature to handle this case is shown in Figure 4.4. When a

process is started (the transition labeled with exec), its user id is stored in

the pattern local variable UID. The signature remains unmatched as long

as the process does not change its user id (the output state of the transition

labeled exec). If the process changes its user id without calling setuid,

setgid, or exec, the pattern is matched. If the process calls an authorized

way of changing its user id, the invariant triggers the destruction of the

partial matches.

78

exec
[uid]

!(setid|exec)
[userid != uid]

!(setid|exec) [userid = uid]

setid

PATTERN

INVARIANT

Figure 4.4 A Simli�ed Pattern to Detect Unauthorized Transitions to Root

Unbounded Output Nets. These are general nets without any constant bounds

on the number of input or output states of a transition. Thus, the number

of output states of a transition can be as large as n, the number of states in

the pattern. The maximumnumber of tokens in the pattern after observing

m events is no longer independent of n. Matching is with AND semantics,

i.e. concurrency of exercising more than one transition labeled with the

same event type is permitted.

Another category similar to unbounded output nets is that of partial order

patterns. In these nets, matching is de�ned with partial order semantics. Partial

order patterns overlap with AND patterns without subsuming them. AND

patterns and partial order patterns are the same if no two transitions in a pattern

are labeled with the same event. It is because of this direct correspondence that

this category is mentioned here.

Other Patterns. The CPA model of representing and matching patterns can be used

to model the moves of a Turing machine. A Turing machine has a �nite control

and an in�nite tape on which symbols can be erased and written. A CPA can

easily model the �nite state of a Turing machine using its own graph, while

79

the CPA global state that can be manipulated through actions can serve the

function of the in�nite tape. Each move of the Turing machine corresponds to

the processing of an input event by the CPA. Thus, the CPA models a Turing

machine by matching an event sequence of in�nite length while the tape contents

(both initial and intermediate) are manipulated through global state changes.

By the Church-Turing hypothesis [HU79], the CPA model can compute any

computable function.

4.5 Comparison with Other Models of Matching

In comparing our model with other models of matching such as regular expres-

sions, context-free grammars, and attribute grammars, we assume that these models

are meant to be used as intuitively and directly as possible in representing intru-

sion signatures. For example, while attribute grammars are powerful, using them to

recognize a set of sentences whose underlying structure does not lend itself to being

represented as a context free grammar is not very intuitive and, therefore, not very

useful to the human responsible for writing the intrusion signatures.

Regular Expressions. Traditional matching with regular expressions is fast and well

understood. Approximate pattern matching involving regular expressions is

polynomial in the size of its input. However, regular expressions can only rep-

resent extremely simple attack scenarios not involving context and that is their

biggest limitation.

Deterministic Context-Free Grammars. By themselves they are of limited use be-

cause they cannot handle context. There is no easy way to extend them to

match with the \follows" semantics. Deterministic grammars such as LR and

LALR are subsumed under their corresponding extensions that provide gram-

mar attributes. The discussion and comparison of the CPA model of matching

with attribute grammars, which is discussed below, also applies to deterministic

context-free grammars.

80

Attribute Grammars provide a powerful representation mechanism but, to be useful

to humans writing intrusion signatures, the underlying signature speci�cation

needs to be context-free. As with context-free grammars, there is no easy way

to extend them to match with the \follows" semantics.

Other technical di�culties in directly providing our notion of \context" to at-

tribute grammars are:

� It has not been shown in the literature how partial matches can be ef-

�ciently abandoned if the context cannot be satis�ed in the traditional

model of computing provided in attribute grammars. That is, even though

it may be possible to represent a pattern to be matched as a corresponding

attribute grammar with a special attribute whose value indicates a success-

ful match, it is not clear how to discard partial matches when the value

of the special attribute indicates that a successful match is not possible.

The straightforward technique of advancing the input by one and retrying

the match is too ine�cient because of the maintenance of a stack to match

context-free grammars.

� It may not be possible to easily evaluate \context" expressions while gen-

erating the parse tree for the grammar. For example, suppose that

A! BCD; P ! QRS;

are two productions in the grammar. Let B have an attribute x and Q

have an attribute y. Assume that the context that must be satis�ed for

valid sentential forms speci�es that x = y. Assume further, for simplicity,

that P is reduced before A in all valid sentences and that all valid sentences

require both P and A.

When the pushdown automaton that corresponds to the grammar reduces

B, it should verify that x = y. If x 6= y, the automaton should discard

the match. But the location of P or Q as an o�set from the top of the

81

stack is variable at the time that B is reduced. Furthermore, P might have

been reduced further and may require that y be propagated upwards in the

parse tree. Building the entire parse tree and then verifying the contextual

expressions is contrary to the goal of discarding partial matches as soon as

it is discovered that they will not lead to successful matches.

Thus, using attribute grammars to represent and match intrusion sig-

natures complicates the matching procedure considerably. Fixing these

problems would change the traditional model of computing with attribute

grammars substantially.

4.6 Summary

This chapter introduced our model of matching which is based on Colored Petri

nets. Our model is simple and provides for a direct graphical representation of pat-

terns. Externally, a language can be designed to represent signatures in a more

programmer-natural framework, and programs in the language compiled to this in-

ternal representation for matching. The model is designed to be as limited in its

expressive power as possible while still satisfying the requirements presented in Sec-

tion 3.2 and representing the intrusion classi�cation of Section 3.1. For example,

embedded negation of the form p1p2p3 is not directly representable in the model but

we have not needed to use this feature to represent intrusion patterns that we have

studied.

82

5. THEORETICAL PROPERTIES OF THE MATCHING MODEL

In this chapter we present some important theoretical properties of the model

shown in the previous chapter. Establishing theoretical bounds on matching in this

model is important because it lends credence to the procedure of simulating nondeter-

ministic CPAs, which is one of exhaustive search. Section 5.1 highlights this result by

showing that the time complexity of matching in which event data can be remembered

(for example, in token local variables) for later matching is NP Hard. This means

that new algorithms that will reduce the matching time for this problem are unlikely

to be found. Section 5.3 shows how some compiler optimization techniques can be

applied to improve pattern matching in our model.

5.1 Complexity of Matching

By uni�cation we mean that patterns can specify variables that can match any

single event and remember the event they match. These variables, once instantiated,

can be used later in the pattern to force a match against events occurring in the

input stream. For example, one can specify the pattern abXcdX which means event

a, followed by event b, followed by any event, which is stored and made available

through the variable X, followed by c, d and the same event that matched the �rst

X.

Property 1: Pattern Matching with Uni�cation is NP Complete.

We show that the problem is NP Complete by reducing the problem of vertex-

cover in arbitrary graphs to the problem of pattern matching with uni�cation. This

proof is a recast of the proof presented by Aho in [Aho90, Section 6].

83

The vertex-cover problem for an arbitrary graph G and an integer k is to determine

if there is a subset of vertices in G of cardinality at most k such that every edge in G

is incident on at least one vertex in the selected subset.

We will construct an event stream E and a pattern P from G in polynomial time

such that P matches E i� G has a vertex cover of size � k. Let # be a distinct marker

symbol. The event stream E is a concatenation of two parts (1) A listing of all the

vertices in G and (2) A listing of all the edges in G. The purpose of (1) is to force

the pattern to initially make a choice of the nodes that comprise the vertex-cover.

The purpose of (2) is to verify that the vertices indeed form a vertex-cover. If the

vertices of G are labeled n1 : : : nf , i.e., the number of vertices in G is f , then (1) is

the string n1 : : : nf# repeated k times. The pattern V1# : : : Vk#, where V1; : : : ; Vk are

variables that are instantiated to the events they match against, will select k nodes

in G, perhaps not all distinct when matched against this event stream

To verify that the set of vertices selected in (1) constitute a vertex-cover, we take

each edge in G and list it as a pair of vertices, separated by #, in no particular order.

For all edge descriptions ninj#, at least one of ni; nj must be 2 fVi : : : Vkg. For any

particular edge, this can be written as the pattern (Vij : : : jVk#). To verify that each

edge in G has at least one endpoint in the vertex-cover, the pattern is simply repeated

m times, where m is the number of edges in G.

Concatenation of (1) and (2) makes the pattern P , of sizeO(km), to be V1# : : : Vk#

(Vij : : : jVk#)m while the event stream E, of size O(kf + m), against which P is

matched is (n1 : : : nf#)k(8
f
i=18

f
j=1ni nj#), ni nj is an edge in G. The correspondence

between the pattern and the event stream is shown below. The # symbols in the

pattern and the event stream match one-to-one.

1 � � � k 1 � � � m

Pattern V1# � � � Vk# (Vij : : : jVk#) � � � (Vij : : : jVk#)

Events n1 : : : nf# � � � n1 : : : nf# ninj# � � � ninj#

Because the vertex-cover problem can be represented as a CPA pattern, it is unlikely

that any CPA matching algorithm can solve it in less than exponential time. This

84

establishes a lower bound for any matching algorithm for CPAs. This means that

the worst case performance of any matching algorithm is no better than that of the

brute force search of trying to match a CPA against every subsequence (possibly

non-contiguous) of input.

Property 2: Remembering event associated data is as at least as di�cult as remem-

bering event types. That is, pattern matching with context evaluation is NP Hard.

We show this result by reducing the problem of matching with uni�cation (prop-

erty 1, denoted here by MU) to the problem of matching with context evaluation

(denoted here by MC) in polynomial time. If the pattern in MU is matched over the

input event set e1; : : : ; en, its corresponding pattern in MC is matched over the single

input event emc. The event emc has one data element, d, whose value ranges over the

set of integers I. An event ex in MU corresponds to the event emc in MC with the

data value d = x.

For all uses of an ununi�ed variableX in MU that matches the event ex, remember

the data value associated with emc in MC. Let the remembered value be denoted by

d0. This data value associated with emc should be x. For all bound uses of X, use

the data value associated with emc to force the exact match in MC. That is, match

emc j emc:d = d0. This transformation establishes a direct correspondence between

a problem in MU and a problem in MC. A pattern in MU can be transformed to a

pattern in MC in time linear in the size of the pattern. Because MU is NP Complete,

MC is NP Hard.

A consequence of these results is that there are unlikely to exist algorithms that

will solve the general problem of matching with uni�cation or context evaluation faster

than exponential time in the worst case, which is the time required to exhaustively

try to match the pattern in every possible way against the input. In some special

cases of the structure of the patterns and the guard expressions matching can be

improved. We now investigate these constraints.

85

5.2 Some Engineering Solutions that Improve Matching

Observation: An exhaustive search may be avoided when matching, if some or all the

guards in the pattern are monotone.

Let x1 be a variable that takes on values over the lattice (L1;�L1
). Let the

variables x2; : : : ; xn be similarly de�ned over the lattices L2; : : : ; Ln respectively. Let

e(x1; : : : ; xn) be a function of the n variables x1; : : : ; xn whose values range over the

lattice L. e is monotonic if e is either non-decreasing or non-increasing with respect

to �L as the values of any one or more xi is monotonically increased or decreased

with respect to �Li
. We refer to a data �eld as being monotonic if its observed value

is non-decreasing or non-increasing with respect to to its domain lattice. Logical

expressions in a programming language sense that evaluate to true or false are

de�ned to be monotonic over the lattice false � true but that choice is arbitrary.

As an example that illustrates this observation, consider Figure 5.1. Without

context, the pattern represents the condition (a ^ ce)fbd. The transition � synchro-

nizes the subpatterns a and ce which must both occur before the pattern is matched

further. Consider the following guards placed at the following pattern transitions:

At �: T1 = this[time]

The successful evaluation of this guard stores the time at which � occurred in the

pattern variable T1.

At �: T2 = this[time] && T2� T1 � 5

The successful evaluation of this guard stores the time at which � occurred in the

pattern variable T2 and speci�es that � should occur within 5 units of time of the

occurrence of �.

In the �gure, states are numbered, while edges are labeled with alphabets.

86

8

5

6

1

7

10

11

init states=> other states=>

final state

α

β

γ

t3

t2

T1 = this[TIME]

T2 = this[TIME] && T2 - T1 ≤ 5

t1

a

e

c

d

b

f

Figure 5.1 A Pattern with Monotonic Guard Expressions

During matching of this graph, consider that there is a token t1 in state 10,

duplicated to t2 in state 8 and awaiting merging with t3 in state 1 before transiting

to state 7. Assume that the transition � can never �re for the combination of tokens

ft2; t3g because the guard T2�T1 � 5 cannot be satis�ed for this pair. This indicates

that t1 need not be duplicated any further, because any further duplication will only

result in a larger value of T2, resulting in the continued failure of the guard T2 �

T1 � 5. Finding a match of the pattern does not require exhaustive search because

duplication of t1 can be avoided. This conclusion can be made because the time

stamps of successive events are non-decreasing and the boolean expression e(x) =

a+x � b is monotonic in the sense that if e(x) is false for any x = l then e(x) is false

8x � l. This observation is not applicable for non monotonic data �elds.

This observation can be generalized as property 3:

Property 3: During matching, whenever a monotonic data �eld d is de�ned at state

s for token t, t may be destroyed if there is a node p dominating the �nal state f on

any path from s to f such that the monotonic expression involving d at p cannot be

satis�ed.

87

For example, consider the pattern shown graphically in Figure 5.2

p

s

f

i1

i2
i3

i4

path of t

Figure 5.2 A General Pattern with Monotonic Guard Expressions

in which i1; i2; i3; i4 are initial states, f is the �nal state, p dominates f and the

darkened path is the path of token t as it
ows to f . The monotonic data �eld d (of

the audit record) is bound to a pattern variable at state s. Because p dominates s,

token t must pass through p before it reaches f . However, before reaching p, t might

merge with other tokens at intermediate transitions. At each step of the movement

of t towards p, copies of token t (and copies of copies etc.) are being moved to further

states rather than t itself. If the monotonic condition involving d cannot be satis�ed

for the copy of t �rst reaching p, then the condition cannot be satis�ed for any of its

copies that occupy states in the path between s and p, including t itself (at state s)

because of the monotonicity of the expression involving d. Future combinations of

the set of tokens that resulted in t may be prohibited, because they will yield a non-

increasing or non-decreasing value of d, and depending on the type of monotonicity

of the expression at p, may continue to result in its failure.

This observation can be easily generalized to multiple monotonic �elds and mono-

tonic expressions involving only these �elds.

88

Property 4: When any match of the pattern against the input will su�ce, tokens can

be moved instead of duplicated from a state s if:

� The only out transition of s is t and

� The only in state of t is s and

� t does not involve uni�cation or make additional bindings to token variables.

Because of these conditions, no pattern variable associated with a token changes

when it
ows past t. Therefore, duplications do not alter its bindings. The result

of expressions evaluated at later transitions are also not a�ected. Thus, because

duplicated tokens traverse the same path, no new solutions are discovered.

It is not permissible to move tokens from states that have more than one outgoing

transition because moving them involves making a choice of the transition over which

they will
ow. Thus, if the token is moved across the wrong transition it will be

unavailable to match further events from its original state and one of them may be

the correct choice.

5.3 Common Subexpression Elimination in Guards

In this section we describe how we can improve the evaluation of guard expres-

sions by exploiting the commonality in guard subexpressions across all transitions

labeled with a particular type. The approach is to evaluate constant subexpressions

involving event data only once and using these values when they are referenced again.

However, because guard expressions can involve short-circuited expressions that can-

not be compiled into a basic block [ASU86] we have modi�ed the traditional notion

of common subexpression elimination to work across basic blocks by using a virtual

machine that understands the semantics of operations used in guard expressions. In

particular, the virtual machine understands which operations cause side e�ects and

which do not.

89

Consider, as an example, the following attack scenarios (see Figures 5.3 and 5.4)

which can be encoded as two separate patterns to be matched simultaneously:

link1

symlink1

exec unlink

symlink2

link2

CREATE AN ALIAS FOR A
FILE

EXECUTE A
SETUID SHELL
SCRIPT BY
INVOKING THE
ALIAS

CHANGE THE ALIAS TO POINT
TO ANOTHER FILE

Figure 5.3 A Timing Attack Involving Setid Shell Scripts

1. a. ln setuid_shell_script -i

b. -i

2. a. ln setuid_shell_script FOO

b. FOO &

c. rm FOO (200ms <= T.c - T.b <= 1s)

d. ln your_favorite_shell_script FOO (T.d - T.b <= 1s)

link

symlink

exec

MAKING AN INDIRECT
REFERENCE TO A SETUID
SHELL SCRIPT THAT MAY
APPEAR TO IT AS A VALID
ARGUMENT

INVOKING THE
PROGRAM
THROUGH THE
ARGUMENT

Figure 5.4 Exploiting Setid Shell Scripts

90

There is considerable similarity between the sub-signatures 1a and 2a. For any

event of type LINK, once one of them is evaluated, the other may not need to be

evaluated completely from the beginning. Consider the following decomposition of

1a and 2a.

5.3.1 Compilation of 1a

The LINK event provides information about the pathname of the existing �le to

which the link is being formed as well as the pathname of the newly created link. The

guard at 1a ensures that the pathname of the newly created link (stored in FILE2)

begins with the character `-' and that the existing �le to which the link is made (stored

in FILE1) is a setuid shell script �le, i.e. the �le has its setuid bit set, is executable

by group or other and the �rst two characters of the �le start with \#!". The guard

also tests if the link is being formed to a �le that is not owned by the process forming

the link. Otherwise there is little advantage in exploiting this vulnerability. This is

checked by testing U (stores the EUID of the process issuing the link command) and

T4 (stores the owner of the �le to which the link is being formed) for inequality. The

guard expression being compiled is:

FILE1 = this[SRC FILE] && FILE2 = this[DEST FILE] &&

SHELL SCRIPT(FILE1) = 1 && OWNER(FILE1) != this[EUID] &&

basename(FILE2) = "-*" &&

(FPERM(FILE1) & XGRP = 1 || FPERM(FILE1) & XOTH = 1)

91

1. THIS LINK All references to the current event are made

via THIS.

2. TRANSITION 4 This transition is numbered 4 among all the

transitions.

3. T11 THIS[SRC FILE]1 Indexing may be considered a primitive,

polymorphic operation.

4. FILE11 T11 Global variables are assigned only through

temporaries. FILE1 and FILE2 are variables

global to the pattern.

5. T22 THIS[DEST FILE]2

6. FILE22 T22 All temporary variables are named

T<number>.

7. T33 THIS[EUID]3

8. U3 T33 U is also global to the pattern.

9. T44 OWNER(FILE11)4 Owner may be considered a built-in function

that returns the owner of a �le.

10. IFEQ T4, U, EXIT If T4 matches with U, jump to stmt labeled

EXIT.

11. T55 BASENAME(FILE21)5 Basename may be considered as a built-in

function that gives the �lename portion of a

full path name.

12. IFM T5, "-*", EXIT If T5 matches \-*" then jump to stmt la-

beled EXIT. The regular expression used here

is just illustrative.

13. T66 SHELL SCRIPT(FILE11)6 May be regarded as a built-in function to

test if a �le is a shell script.

14. IFEQ T6, 0, EXIT If T6 is 0, jump to stmt labeled EXIT.

15. T77 FPERM(FILE11)7 Built in function giving the permissions of a

�le.

16. T88 AND T77, XGRP XGRP is a constant used to determine if a

�le is group executable.

17. IFEQ T88, 0, L1

18. RES 1 Signals a successful evaluation of the guard.

19. RETURN Return from this guard.

20. L1:

21. T99 AND T77, XOTH XOTH is a constant used to determine if a

�le is executable by others.

22. IFEQ T99, 0, L2

23. RES 1

24. RETURN

25. EXIT: L2:

26. RES 0 Signals an unsuccessful evaluation of the

guard.

27. RETURN

92

The functions owner(), name(), shell script() may be considered mathemat-

ical functions in the sense that they return the same value for the same arguments.

This assumption is made to illustrate better the common subexpression mechanism.

owner(), for example, may not strictly be constant in that sense.

5.3.2 Compilation of 2a

The guard to be compiled is:

FILE1 = this[SRC FILE] && FILE2 = this[DEST FILE] &&

SHELL SCRIPT(FILE1) = 1 &&

(FPERM(FILE1) & XGRP = 1 || FPERM(FILE1) & XOTH = 1)

28. THIS LINK

29. TRANSITION 7 This transition is numbered 7 among all

the transitions.

30. T1010 THIS[SRC FILE]10 Temporary variable numbers are not

reset.

31. FILE110 T1010

32. T1111 THIS[DEST FILE]11

33. FILE211 T1111

34. T1212 SHELL SCRIPT(FILE110)12

35. IFEQ T1212, 0, EXIT

36. T1313 FPERM(FILE110)13

37. T1414 AND T1313, XGRP

38. IFEQ T1414, 0, L3

39. RES 1

40. RETURN

41. L3:

42. T1515 AND T1313, XOTH

43. IFFALSE T1515, L4

44. RES 1

45. RETURN

46. EXIT: L4:

47. RES 0

48. RETURN

The superscripted numbers in the instructions above correspond to their value

numbers as outlined in Cocke and Schwartz [CS70]. Associating a number with each

93

expression, called its value number, allows the e�cient determination of common

subexpressions within an expression or in the three address code that corresponds

to a basic block. These are compile-time optimizations. For example, to compute

b � b + b � b we can avoid computing b � b twice by assigning a value number to b � b

when it is �rst encountered. When b � b is seen again, we know that its value has

already been evaluated because it has a value number associated with it. We can

therefore use the precomputed value of b � b instead of reevaluating it.

The expression THIS[SRC FILE] is given a single value number because index-

ing may be regarded as a primitive operation in the virtual machine. Each guard

expression begins with an instruction of the form

THIS htype of audit recordi

The variable THIS is a placeholder name for the audit record currently under analysis

for a possible match. This instruction also serves to limit the types of audit records

that are tried for a possible match with this instruction sequence. Only an audit

record of type LINK can possibly evaluate the expressions associated with 1a and

2a successfully. We have used two special variables in the compilation: RES, whose

value determines whether the guard has been evaluated successfully, and TRANSITION,

which refers to the particular guard transition currently being compiled. TRANSITION

may be used to index into a vector of transitions in which each element denotes

whether the corresponding transition �res.

Doing Common Subexpression Elimination Across Basic Blocks

Combining the set of compiled instructions from all transitions labeled with the

same event type is nontrivial. Each guard expression may involve &&s and ||s, result-

ing in conditional jumps in the compiled code. This complicates static subexpression

elimination across jumps, both within and across guards. Common subexpression

elimination within a basic block is not useful here as the size of basic blocks is likely

to be small, with little redundancy. The approach we are proposing is to always

94

evaluate every basic block so that we can statically precompute all the available

subexpressions regardless of the
ow of execution of any particular run.

Another important decision is the method of combining the guard expressions.

Guards can be combined in a chain with common subexpression elimination performed

on the composite sequence, or it may be possible to organize them as a network

(similar to Rete networks [For82]) to improve the running time of evaluating them

by taking dynamic evaluation into account. When organizing a network, a good

con�guration needs to be determined as does the duplication and rearrangement of

guards, perhaps based on runtime statistics of their evaluation outcome. This is

similar to optimizations that use branch prediction to shorten the running time of

programs. See Hennessy and Patterson [HP90] for a discussion of branch prediction

techniques.

The approach we have taken is to combine the guards in a chain in an arbitrary

order and do elimination across basic blocks and guards by introducing the notion of

active and inactive basic blocks. We do this in a manner similar to how SIMD archi-

tectures [Fly66] control which of their processors are active and execute instructions,

and which ignore them. SIMD machines broadcast instructions to all execution units,

each of which can be disabled during a SIMD instruction [HP90]. In relation to the

virtual machine de�nition, some instructions are treated di�erently depending on the

type of basic block being executed. An active basic block (for a particular evaluation

of the guard expression) is one that needs to be executed to determine the value of

the guard expression. The virtual machine is said to be enabled when executing an

active basic block. Active basic blocks cannot be determined statically because the

evaluation of conditional expressions in
uences its boundaries. Expressions evaluated

in an inactive basic block are termed inactive.

Evaluating Inactive Basic Blocks

Lack of loops and gotos in the guard expressions enable its translation to have

forward jumps only. The virtual machine executing the composite code can then

95

treat jumps specially. Instead of jumping to the speci�ed label, it stores the label

address and disables itself. When the virtual machine is disabled, certain types of

instructions are not evaluated by it. Because all jumps are forward, the machine can

be enabled correctly when the jump address is reached, at which point it can resume

its normal operation and evaluate every instruction it encounters.

This arti�ce ensures that all expressions are always evaluated, and therefore, are

available to expressions evaluated later. This happens whether expressions are ac-

tive or inactive. All assignments to pattern variables (associated with each token)

occur through temporaries and assignment to non temporary variables is disabled

in an inactive region. This prevents undesired side e�ects while ensuring that all

subexpressions are evaluated and reside in their appropriate temporary variables.

Following the procedure of common subexpression elimination outlined in Cocke

and Schwartz [CS70], the code for both the guard expressions is as shown here:

1. THIS LINK

2. TRANSITION 4

20. if(!ENABLED TRANSITIONS[TRANSITION])f
set processor state disabled

JUMP 28 This has no e�ect as the proces-

sor state is disabled, but serves to

store the label at which the pro-

cessor will be enabled.

g
3. T11 THIS[SRC FILE]1

4. FILE11 T1 1 Assignment to global variables

has no e�ect when the processor

is disabled.

5. T22 THIS[DEST FILE]2

6. FILE22 T22

7. T33 THIS[EUID]3

8. U3 T33

9. T44 OWNER(T11)4

96

10. IFEQ T4, U, EXIT Conditional jumps have no e�ect

when the processor state is dis-

abled.

11. T55 BASENAME(T21)5

12. IFM T5, "-*", EXIT If T5 matches \-*" then jump to

EXIT.

13. T66 SHELL SCRIPT(T11)6

14. IFEQ T6, 0, EXIT

15. T77 FPERM(T11)7

16. T88 AND T77, XGRP

17. IFEQ T88, 0, L1

18. FIRABLE TRANSITIONS[TRANSITION] 1

This assignment has no e�ect

when the processor is disabled.

19. JUMP 28 Instead of RETURN. If the pro-

cessor is enabled, disable it and

continue. A JUMP has no e�ect

otherwise.

20. L1:

21. T99 AND T77, XOTH

22. IFEQ T99, 0, L2

23. FIRABLE TRANSITIONS[TRANSITION] 1

24. JUMP 28 Instead of RETURN.

25. EXIT: L2:

26. FIRABLE TRANSITIONS[TRANSITION] 0

27. JUMP 28 Instead of RETURN.

28. THIS LINK Compiled away.

29. TRANSITION 7 This transition is numbered 7

among all the transitions.

290. if(!ENABLED TRANSITIONS[TRANSITION])f
set processor state disabled

JUMP beginning of next pattern

g

30. T1010 THIS[SRC FILE]10 Compiled away because of value

propagation. Same as T1.

31. FILE110 T1010 Not compiled away because it

refers to a pattern variable.

97

32. T1111 THIS[DEST FILE]11 Compiled away. Same value as

T2.

33. FILE211 T1111 Not compiled away.

34. T1212 SHELL SCRIPT(T1010)12 Compiled away. Same value as

T6.

35. IFEQ T1212, 0, EXIT T6 value propagated to T12.

36. T1313 FPERM(T1010)13 Compiled away. Same value as

T7.

37. T1414 AND T1313, XGRP Compiled away. Same value as

T8.

38. IFEQ T1414, 0, L3 T8 value propagated to T14.

39. FIRABLE TRANSITIONS[TRANSITION] 1

40. JUMP next pattern Instead of RETURN.

41. L3:

42. T1515 AND T1313, XOTH Compiled away. Same value as

T9.

43. IFFALSE T1515, L4 T9 value propagated to T15.

44. FIRABLE TRANSITIONS[TRANSITION] 1

45. JUMP next pattern Instead of RETURN.

46. EXIT: L4:

47. FIRABLE TRANSITIONS[TRANSITION] 0

48. JUMP next pattern Instead of RETURN.

ENABLED TRANSITIONS is a vector, each element of which indicates if a particular

transition is enabled. FIRABLE TRANSITIONS is also a vector whose elements indicate

if the corresponding transition is �rable. The percentage reduction in the number of

instructions is � 10%. Out of 48 instructions, 7 were compiled away while 2 were

added (20 and 290). This is the case with two guards. Note that all the instructions

compiled away are from the second expression. In the asymptotic case, the �rst few

expressions will result in most other subexpression eliminations, and for our example,

may asymptotically result in a reduction of 6 statements out of 21, which tends to

� 28%. The compilation of the second guard results in 21 instructions (28 : : : 48),

out of which 7 are compiled away (28; 30; 32; 34; 36; 37; 42) and one added (290). The

�gures for the reduction in the number of instructions do not imply a corresponding

decrease in the execution time of the code, for that depends on the runtime behavior

98

of the conditionals. But, to simplify analysis, an assumption of uniform elimination

in every basic block implies a corresponding decrease in the evaluation time of the

guards.

Thus, to determine whether the tokens in the initial states of �gures 5.3 and 5.4

need to be duplicated and moved across to the succeeding state, we need to evaluate

the code for every audit record of type LINK.

Is Evaluating Every Basic Block of Every Guard Worthwhile?

This leads to the question of the e�ciency of this approach. It is possible that only

one guard is true, but this approach would require every expression in every guard to

be evaluated. This approach might seem worse than that of evaluating every guard

individually because in that case short circuiting might result in fewer expressions

being evaluated. We believe that savings can be made with this approach, but the

amount is dependent on the type of guard expressions and the commonality among

them.

Because of the nature of the matching process, transitions, enabled once, usually

continue to remain enabled1. Thus, if a guard is evaluated once for an event, it is

likely to be evaluated from then on for all events of that type. The approach presented

here provides a mechanism to improve matching that can be pro�tably used given the

appropriate set of signatures. A system might incorporate both types of approaches,

with and without subexpression elimination and, based on heuristics and runtime

statistics, use one approach over the other.

In summary, the following properties are used to ensure the semantic consistency

of the expressions or simplify the CSE on the generated code. For a treatment of

these and other compiler optimization issues, see the book by Aho et al. [ASU86] or

the book by Fischer and LeBlanc [FL88].

1Some states may be speci�ed nodup [Section 6.3.1], but such states are rare.

99

1. Token variable values referenced in a guard expression but set outside it are not

value-propagated across guards, but re-evaluated from the token the �rst time

they are referenced in the guard.

2. All jumps in the compiled code are forward. This can always be arranged by

the compiler as there are no loops in the guard expressions. This implies that

the structure of a guard expression is a DAG with only forward edges. A bene�t

of this structure is that dead variables can be detected by simply examining the

rest of the code.

In this dissertation we have not precisely speci�ed a virtual machine and the set

of primitives that it understands. Such an attempt was made in [KS]. We have

instead shown that the use of a virtual machine can simplify the evaluation of guard

expressions in the context of detecting computer intrusions. The practical utility

of common subexpression elimination can only be determined by an implementation

that measures the overhead imposed by the virtual machine and the interpretation

of the virtual machine instruction set.

5.4 Summary

In this chapter we studied the theoretical limitations of matching patterns of the

type required for intrusion detection. Traditional pattern matching that does not

involve the speci�cation of context is not applicable to intrusion detection. The prob-

lem of matching with context, which is a basic requirement to represent intrusion

patterns, is NP Hard. This means that an exhaustive search for the solution in the

solution space may be required in the worst case. While the theoretical bounds on

matching for intrusion detection are exponential, engineering optimizations are possi-

ble that may make an implementation more e�cient in the usual case. In the context

of the model in which patterns may be represented (described in Chapter 4) we de-

scribed some of these heuristics. These heuristics exploit particular structures of the

100

graphical representation of patterns, the non-decreasing value of time stamps associ-

ated with event sequences and the nature of the desired match. We also presented an

arti�ce for doing common subexpression elimination when evaluating guard expres-

sions. This exploits the peculiar nature of the problem domain that evaluates every

expression associated with every link with a given label for every occurrence of that

event.

101

6. IMPLEMENTATION ARCHITECTURE OF THE MODEL AND
SIMULATION RESULTS

In this chapter we describe the architecture of the prototype we built based on

the model described in Chapter 4. The model, together with the prototype presented

here, are designed to provide the bene�ts listed in Section 3.2.1 and meet the system

considerations listed in Section 3.2.3. The prototype serves as a proof of concept

implementation of the model.

6.1 Introduction

We have used C++ [Str91] as the programming language for the implementation of

the prototype. The prototype runs under the Solaris 2.3 operating system and uses the

Sun BSM [Sun93b] audit trail as its input. The programming techniques and language

features we have used for the implementation are applicable to other programming

languages as well. The implementation is directed at providing a set of integrated

classes that can be used in an application program to build a generic misuse intrusion

detector. The implementation also suggests a possible way of structuring classes

encapsulating generic functionality and the interrelationships between the classes to

design any misuse detector. This chapter also describes that structure. Measurements

of the time and space requirements of the implementation are also presented.

The choice of the language was dictated by the following reasons, not all of which

are unique to C++:

� The free availability of quality implementations of the language. Not only is

this helpful for developing software, it is important for wide-spread acceptance

if the implementation is distributed in source form for others to modify and

102

adapt to their environments. We have used the SunPro1 C++ compiler for our

prototype.

� Our familiarity with C++ and its development environment. In the interest

of building a working prototype quickly, we capitalized on our knowledge of

the language and the development environment provided by the SPARCworks2

workbench.

� The availability of a large collection of ready-to-use libraries. Because this

is a prototype implementation, we were not unduly concerned with writing

highly optimized code speci�cally tailored for intrusion detection. To perform

common tasks including string manipulation, hash table generation, or binary

�le I/O, we preferred to use ready-made libraries unless these tasks proved to be

a performance bottleneck. The availability of quality implementations of such

libraries are very useful for rapid prototyping. We have used the Rogue Wave

class library Tools.h++ [Sun93a] for our implementation.

� The linguistic support provided by C++ to write modular programs. C++

provides for data encapsulation and abstraction in the form of classes and over-

loaded functions, genericity in the form of templates, object orientation in the

form of inheritance and virtual member functions. All of these features have

been used extensively in our implementation.

� Availability of support tools in the form of grammar recognizer generators like

yacc++ and lex++. Because our prototype parses descriptions of patterns into

code that realizes the pattern, it was desirable to have parsing tools in the same

programming language as the one in which the prototype was written. While it

is possible to use a parsing mechanism in any language as a �lter that is called

as a subprocess, direct sharing of data and functions between the prototype and

the parser enabled simpli�cations.

1Trademark of Sun Microsystems, Inc.
2Trademark of Sun Microsystems, Inc.

103

� Because it is easy to add new event streams to the prototype, we have also built a

rudimentary matcher for IP datagrams. As a further step, we intended to build

the entire matcher as a streams module that interfaces with the networking

subsystem. If the prototype is built in a language close to C, the e�ort of

converting it to a streams module [Rag93] would be less.

The set of integrated classes we have developed for misuse intrusion detection can

be programmed in many other programming languages as well because no properties

speci�c to C++ have been assumed or used. We only exploit the language's data

encapsulation, data abstraction and object-oriented features to simplify the software

engineering concerns of our implementation. We use the word class in a generic sense

and the corresponding notion from many other languages can be substituted here.

6.2 Approach

The implementation of this model can be decomposed into the following sub-

problems:

1. The external representation of patterns: how the pattern writer encodes pat-

terns for use in matching.

2. The interface to the event source. In our example it would be the interface to

IP datagrams.

3. Dispatching the events to the patterns and the matching algorithms used for

matching.

These issues are discussed in the next sections. In addition to solving these require-

ments, our implementation is designed to simplify the incorporation of the following:

The ability to create patterns and to destroy them dynamically, as matching

proceeds.

The ability to partition and distribute patterns across di�erent machines for

improving performance.

The ability to prioritize matching of some patterns over others.

104

The ability to handle multiple event streams within the same detector without

the need to coalesce the event streams into a single event stream.

We describe our design in the next section and show how the library classes

embody the design. We have included a description of the application interface to

the library and the description of patterns because they are important to formulate

a comprehensive view of the library.

6.3 Overall Architecture

The library consists of several classes, each encapsulating a logically di�erent

functionality. An application program that uses the library includes appropriate

header �les and links in the library.

The external representation of patterns (sub-problem 1) is done using a straight-

forward representation syntax that directly re
ects the structure of their graphs.

These speci�cations can be stored in a �le or maintained as program strings. When

a pattern is needed to be matched in an application, a library-provided routine (a

Server class member function) is called that compiles the pattern description to gen-

erate code that embodies the pattern. This code is then dynamically linked to the

application program and the pattern matching for that pattern is initiated. This

structure is explained using an example in Section 6.3.1.

The application also instantiates a server for each type of event stream used for

matching. Events are totally encapsulated inside the server object (sub-problem 2)

and are only used inside pattern descriptions. A pattern may only refer to events

from one event stream. When a pattern description is compiled, it is added to the

server queue that handles events of that type. The server accesses and dispatches

events to the patterns on its queue in some policy speci�able order (sub-problem 3).

The application structure is explained below. Section 6.3.2 describes the structure

of events. Section 6.3.3 explains the structure of the server itself in detail and its

relationship to the patterns that are instantiated by the application.

105

6.3.1 Application Structure

As an example application structure, consider matching the pattern described in

Figure 6.1. The pattern monitors rlogin connections and may be used to detect

such connections on a fast gateway by examining each packet that passes through it.

The example is chosen from a di�erent event domain to illustrate that the model is

independent of the nature of the underlying events.

A TCP connection (an rlogin connection is a TCP connection to a speci�c port)

setup between the initiator S and the recipient D involves a three-way handshake

[Com91]. The �rst segment of the handshake involves sending an IP datagram from

S to D with the SYN bit set in the code �eld. In response to this SYN packet D sends

a datagram that acknowledges the SYN packet and sets the SYN bit to continue the

handshake. The �nal message is the acknowledgement of the second SYN and is sent

from S to D.

Thus, to detect simpli�ed TCP connections not involving retransmissions we can

monitor for the sequence:

1. A SYN packet, from a source S to a destination D.

2. A SYN+ACK, from D back to S.

3. An ACK, from S to D.

Pictorially this is:

S D D S S D
SYN SYN + ACK ACK

Initial State

token

Final State

TCP TCP TCP1 2 3

(start) (after_ack)(after_syn_ack)(after_syn)

Figure 6.1 Matching a TCP Connection

106

To monitor rlogin connections, we match this pattern for destination ports equal

to the rlogin port, which is 513. The application program makes use of an IP_Server

object. The server object has built into it the layout of events and the event types that

can be used in a pattern de�nition. IP_Server also has member functions to access

events, in this case from the machine's network interface, and to dispatch them to the

patterns that are registered with it. The server is also responsible for parsing pattern

descriptions and can type-check the pattern speci�cation because the data format of

events are built into the server. The call to the server member function parse_file

reads, compiles and registers a new pattern with the server object. When the server

object is started with a call to S.run(), it starts accessing events and dispatching

them. An example application code is shown in the boxed text in Figure 6.2.

This consumes one thread of control, as S.run() never returns. The server is

responsible for implementing concurrency control methods to ensure that calls to its

public member functions do not corrupt its internal state when there is an active

thread in run(). Our implementation uses monitors as described by Hoare [Hoa74]

to ensure this. The pattern description contained in �le patterns-ip is:

//file patterns-ip

1 extern int RLOGIN_PORT_CLIENT, RLOGIN_PORT_SERV,

2 print_tcp_conn(int, int);

3

4 pattern TCP_Conn_Mon "Monitor rlogin connections" priority 10

5 int FROM_PORT, FROM_HOST;

6 int TO_PORT, TO_HOST;

The variable declarations de�ne the color of the tokens in the pattern. Each to-

ken has four integers that can be accessed through the syntax this[FROM_PORT],

this[FROM_HOST] and so on.

7 state start;

8 nodup state after_syn, after_syn_ack;

9 state after_ack;

These are the states of the pattern. after_syn signi�es the state after the initial

SYN is observed, after_syn_ack signi�es the observation of the initial SYN followed

107

//file application.C

#include "IP_Server.h"

int RLOGIN_PORT = 513;

int print_tcp_conn(int from_HOST, int to_HOST) //callback function

{

cerr << "A TCP connection has been established between "

<< ((from_HOST >>24) &0xFF) << "." << ((from_HOST>>16) &0xFF)

<< "."

<< ((from_HOST >>8) &0xFF) << "." << (from_HOST &0xFF)

<< " and "

<< ((to_HOST >>24) &0xFF) << "." << ((to_HOST>>16) &0xFF)

<< "."

<< ((to_HOST >>8) &0xFF) << "." << (to_HOST &0xFF)

<< endl;

return 1;

}

int main()

{

IP_Server S;

//read pattern description from file "patterns-ip"

IP_Pattern *p1 = S.parse_file("patterns-ip");

/* dup thread of control if necessary. run() doesn't return */

S.run();

return(1);

}

Figure 6.2 An Example Application

by a response SYN. nodup indicates that tokens in this state will not be duplicated

to other states, rather they will be moved to other states when the transition �res.

10 post_action { print_tcp_conn(FROM_HOST, TO_HOST); }

print_tcp_conn is called with token values corresponding to the token in the �nal

state of the pattern.

108

11 neg invariant first_inv

12 state inv_start, inv_final;

13

14 trans rst(TCP)

15 <- inv_start;

16 -> inv_final;

17 |_ { this[RST] = 1 && TO_HOST = this[FROM_HOST] &&

18 this[TO_HOST] = FROM_HOST;

19 }

20 end rst;

21 end first_inv

The invariant speci�es that no reset should be received during connection formation.

An invariant speci�cation can itself be a graph. Whenever a token is moved from the

start state of the pattern, its copy is placed in the start state of the invariant. This

token can have part of its color de�ned because the �ring of a transition may change

a token color.

22 trans tcp_1(TCP) /* TCP is the event type of the transition */

23 <- start;

24 -> after_syn;

25 |_ { this[SYN] = 1 && this[ACK] = 0 &&

26 FROM_PORT = this[FROM_PORT] &&

27 this[TO_PORT] = RLOGIN_PORT_SERV &&

28 FROM_HOST = this[FROM_HOST] && TO_HOST = this[TO_HOST];

29 }

30 end tcp_1;

If this packet is a SYN packet destined to the RLOGIN port, store its source and

destination host and source port in the token.

31 trans tcp_2(TCP)

32 <- after_syn;

33 -> after_syn_ack;

34 |_ { this[SYN] = 1 && this[ACK] = 1 &&

35 (this[FROM_PORT] = RLOGIN_PORT_SERV) &&

36 (this[TO_PORT] = FROM_PORT) &&

37 (this[FROM_HOST] = TO_HOST) && (this[TO_HOST] = FROM_HOST);

38 }

39 end tcp_2;

109

If this packet is a SYN packet from the RLOGIN port of a host whose name matches

that stored in the token, destined to the host and port corresponding to this token's

variables FROM HOST and FROM PORT then �re the transition.

40 trans tcp_3(TCP)

41 <- after_syn_ack;

42 -> after_ack;

43 |_ { this[SYN] = 0 && this[ACK] = 1 &&

44 (this[FROM_PORT] = FROM_PORT) &&

45 (this[TO_PORT] = RLOGIN_PORT_SERV) &&

46 (this[FROM_HOST] = FROM_HOST) &&

47 (this[TO_HOST] = TO_HOST);

48 }

49 end tcp_3;

Any non SYN packet
ows from (FROM HOST, FROM PORT) to (TO HOST,

TO PORT). This de�nes the structure of the pattern graph.

50 end TCP_Conn_Mon;

Listing 1: A Sample Pattern Description

Similarly, if an application needed to match patterns against a C2 audit trail it might

have used a C2_Server instead of IP_Server or concurrently with it within the same

application program.

6.3.2 Event Structure

Each event in the event stream is converted to an instance of an event class.

For IP datagrams this class might be named IP_event. This class encapsulates all

the attributes common to IP datagrams. Derived classes of IP_event may be used

for specifying more specialized types of IP datagrams. For example, TCP_event and

UDP_eventmay be derived to represent TCP and UDP datagrams. Each event object

can identify its type through its type() member function. This is used by the server

to dispatch the event to the appropriate patterns. All the data belonging to the event

is made available through its member functions. This mechanism encapsulates the

organization of data in the event, which may be system dependent in general. The

110

description of all the event classes is what constitutes the back end of the system and

is one of the few system dependent layers.

6.3.3 Server Structure

For each event, the server looks at its type and consults a dynamically-maintained

table of patterns that have requested events of that type. It then calls the Patproc

procedure of each such pattern. Patproc is a procedure associated with every pattern

(its member function) that processes events for it. This approach to processing events

is similar to the approach taken in Microsoft Windows [Pet92]. Events of interest are

requested by patterns when they are instantiated by the server.

Events can be dispatched to patterns based on their priority. Patterns can be

placed in queues at the appropriate priority level, and patterns serviced in each queue

in a round-robin fashion. This ordering of patterns by priority assumes that on the

average, an event can be dispatched to all the patterns requesting it in a time less than

the average time of generation of an event. If this requirement is not met, patterns

up to a certain level in priority may be perpetually starved. A mechanism can be

added to age patterns that have not been exercised by any event for a long time by

increasing their priority. Pictorially this is as shown in Figure 6.3.

events

C
o

n
st

ru
ct

 O
b

je
ct

s

Audit T
rail

Clock

Network Packets

Application Trails

Highest Priority Patterns

Lowest Priority Patterns

ROUND ROBIN

ROUND ROBIN

Figure 6.3 Server Structure

111

The prototype does not implement the priority structure of dispatching events to

patterns. It treats every pattern to be of the same priority.

6.3.4 Summary

The use of an event stream requires the creation of two classes. An event class

that is the root class of all events provided in the event stream and a server class

that parses pattern descriptions, instantiates them, and manages them on its data

structures. The server class interacts with the event class by converting raw events

into objects of this class and dispatching them. The interrelationship between the

various classes is shown in Figure 6.4. Class names bounded by dotted boxes are

abstract classes. The functions identi�ed within these boxes are the pure virtual

functions of these classes.

SERVER

IP_SERVER C2_SERVER

EVENT

IP_EVENTS C2_EVENTS

Event_TCP Event_UDP C2event_EXEC C2event_CHMOD

IP_PATTERN C2_PATTERNIP
_P

A
T

T
E

R
N

C
2_

P
A

T
T

E
R

N

int type()

PATTERN
void PatProc(Event *)

Figure 6.4 Interrelationship Among the Various Classes in the Detector

Use of writable application global variables that can be manipulated by pattern

actions or guard expressions obviates parallelism in exercising several tokens simulta-

neously when several multi-processor threads are available. Several available threads

112

can, however, simultaneously exercise tokens in di�erent patterns. The order in which

an event is dispatched by the server to the patterns is unde�ned. Application global

variables should ideally be read-only so that concurrency of access to these variables

is possible.

6.4 Building the Server

This section describes how a server class (e.g., IP Server) is implemented in our

library. The event class associated with the server class is completely encapsulated in

the server class and is not visible to the application. The heart of the server class is

the member function that translates a pattern description into C++ code that imple-

ments the pattern [Section 6.4.1]. Because our language for describing patterns is a

straightforward representation of the pattern structure, translation into an automa-

ton is direct. Syntactic structures introduced in the language often translate directly

into functions that are invoked to perform the operation. Section 6.4.2 describes what

the translated automaton looks like, particularly the procedure that accepts incoming

events from the server and exercises the automaton with it.

6.4.1 Server::parse()

The server class associated with each event stream is responsible for translating

patterns speci�c to the event stream. For each pattern (each pattern name is unique),

the translation performs the following actions:

1. It generates a C++ class representing the pattern (IP TCP Conn Mon in our

example) with all the pattern global variables as static data members of the

class (none in our example).

2. It generates a token class (IP_TCP_Conn_Mon_Tok) that represents tokens as-

sociated with that pattern). The token class has private data members corre-

sponding to each pattern local variable and corresponding public functions to

113

access them. In our example these are FROM_PORT, FROM_HOST, TO_PORT and

TO_HOST. These were declared in lines 5 and 6 of listing 1.

3. Each guard expression associated with a transition is re-written with several

syntactic changes:

Pattern local variable references are substituted by calls to token member

functions.

Certain operations are syntactically changed to library calls. For exam-

ple, the pattern matching operator =~ is changed to a call to a regular

expression matching routine.

Calls of the form this[...] are changed to member function calls to the

appropriate event object. See for example line 24 of listing 1.

4. A PatProc procedure is generated for the pattern to handle events for the

pattern, in our example its signature would be IP TCP Conn Mon::PatProc(I-

P Event *).

6.4.2 Pseudo-code for the Generated PatProc

The heart of a pattern is its PatProc, which exercises its automaton on each

event that the pattern has requested. Figure 6.5 shows the pseudo-code of a sample

PatProc. For each incoming event, all transitions labeled with that type are tested to

see if they �re. This requires testing whether the event and the uni�ed token formed

by unifying tokens drawn from each input state of the transition satisfy the guard at

the transition. All tokens residing in nodup states that comprise the uni�ed token

are marked for later deletion. Tokens that are added to output states of a transition

as a result of its successful �ring wait to be added to the states until all transitions

have been tried. Then the tokens are added into all the states. When an invariant is

satis�ed, i.e., a token reaches the �nal state of the invariant, all the tokens related to

the token are destroyed.

114

IP TCP Conn Mon::PatProc(Event *e)

f
for(all transitions in pattern and invariants of type e->type())

f
for(all token sets formed by taking one token from each

input of this transition)

f

if(the token set does not unify)continue;

if(the token set fails the guard)continue;

mark all tokens in this set belonging to nodup states

for deletion;

put a copy of this token in each successor of this transition;

if(one of the input states of this transition is a pattern

start state)

put a copy of this token in the start state of each invariant;

g
g

clock the states to merge tokens waiting at its input

with tokens already in the state;

eval post actions for all tokens in the final state and free them;

delete all marked tokens from all nodup states;

process all invariant final states;

g

Figure 6.5 Pseudo-code of a Sample PatProc

6.5 Design Choices

By far the most signi�cant consideration guiding the design was the runtime e�-

ciency of the detector. For misuse detection using a C2 generated audit trail one might

reasonably expect to process events (audit records) at the rate of 50K-500K/user/day

[Sma95]. Furthermore, any computer resource required for matching patterns reduces

the availability of these resources for general use. We therefore decided not to inter-

pret the pattern automata by using table lookups to determine the pattern structure

115

but instead, to compile the pattern description into an automaton. This also has the

bene�t of compile-time optimizations of guard expressions present in the pattern.

We tried to make the generated code realizing the automaton e�cient by using

functions as little as possible to avoid function call overhead in cases where functions

could not be inlined. This often meant that data structures manipulated by the var-

ious pieces of the generated automaton were not encapsulated and were manipulated

directly by these pieces. This has not resulted in code that is complex and di�cult

to understand. The routines that generate this \program" are structured and the

generated program logic can be deciphered by following the structure and logic of the

generating routine.

The overriding constraint of e�ciency combined with the requirement to dynam-

ically create and destroy patterns meant that automaton descriptions be compiled

and dynamically linked for matching. An additional bene�t of the dynamic creation

of patterns is that new patterns can be created within an executing program based on

its logic and execution
ow. For example, it might be desirable to instantiate speci�c

patterns for matching based on the type and degree of suspicious activity observed.

Such patterns may depend on the particular user and other speci�cs of the suspicious

activity.

Our design, which is based on the model of dispatching events to patterns lends

itself naturally for distribution. In a distributed design, the event sources (audit trails)

may be generated on di�erent machines and their processing on another machine.

That is, the patterns, the server and the event sources may all reside on physically

di�erent machines. The server can then retrieve events by using any of several well-

known techniques such as remote procedure calls [BN84] or distributed objects [Par90]

and dispatch them to patterns. Although our current implementation is single host

based, a distributed implementation should be straightforward.

Our current implementation requires that patterns be exercised sequentially on

events. It does not permit more than one event to be exercised concurrently within a

pattern. We do not consider that to be a signi�cant limitation because concurrency

116

can be exploited by exercising more than one pattern on the same event. In a system

where the expected number of patterns are of the order of a hundred, this does not

seem to be a stringent limitation.

A limitation of the current design is that patterns cannot directly use more than

one event source. To use more than one event source, the disparate sources need to

be canonicalized to one event stream and used in the patterns. Many modern audit

trails, for example the Sun BSM mechanism [Sun93b], allow the creation of user

de�ned event types and applications can generate their own speci�c audit records

through an API.

6.6 Performance

The experiments described below were done on a Sun SPARCstation 5 with 32MB

of memory running Solaris 2.3 under light load. The audit �le was generated sepa-

rately by enabling auditing and simulating exploitations manually and under program

control. Auditing was enabled with the default con�guration, which logs all success-

ful as well as failed events. The pattern descriptions were translated into C++ code

and compiled separately. The running times mentioned below represent the reading

of the audit �le, conversion of each audit record into an object, and dispatching the

event to all the patterns that request that event. It does not include the time for the

matcher to load and begin execution, nor does it include the time to dynamically link

the patterns.

The following graphs show performance �gures when the patterns are exercised

in the system.

6.6.1 Timing Results

Figure 6.6 shows how much time it took to match each pattern against an audit

�le of approximate size 400KB3. Each sample point in the �gure is the mean value

3KB in this section means 1000 octets.

117

of 200 runs. The circle at the end of each vertical bar serves to highlight the end of

the bar. This is the value of the point being plotted. The little horizontal lines on

either side of this point represent the standard deviation of the value over 200 runs.

The audit �le contained 2514 events. The sample point (0; 5:17) in the �gure

represents that the application took 5:17 seconds to create all the event objects and

destroy them. The mean time for the creation and deletion of an audit trail event is

then 5:17=2514 = 2:1 milliseconds. This is the �xed cost per event for the system.

The point (1; 5:45) means that pattern numbered one (numbered arbitrarily) took

5:45 seconds when exercised by the 2514 events. Some patterns take little time,

slightly more than what it took to run with no patterns. The reason for this is that

the type of events used in the pattern occurred so infrequently in the event stream

that the cost of exercising the pattern on those events was negligible.

5

5.2

5.4

5.6

5.8

6

0 5 10 15 20

Time
(usr+sys)
in secs

Figure 6.6 Time for Matching Each Pattern for a 400K Audit File

Figure 6.7 shows the simulation time when more than one pattern was matched

simultaneously in the detector. The event stream and the pattern numbers are the

118

same as in the previous simulation. In the �gure, the data point (3; 5:74) shows that

it took 5:74s to exercise the three patterns 1; 2; 3 together in the system.

The simulation to determine the cost/event/pattern of running multiple patterns

together in the detector are shown in Figure 6.7. The �xed overhead cost of reading

the audit �le and converting each audit record into an object is the same as above,

the varying cost that takes the multiplicity of patterns into account is:

variable cost/event/pattern = (5:91� 5:17)=(2514 � 19) = 15�s

This uses the data point (19; 5:91) which indicates that the detector took 5:91s to

exercise 19 patterns together against an audit trail that consisted of 2514 events.

5

5.2

5.4

5.6

5.8

6

0 5 10 15 20

Time
(usr+sys)
in secs

Figure 6.7 Time for Matching Multiple Patterns for a 400K Audit File

Consider the extrapolation of these results to estimate the performance of the

detector in a real setting. When running a set of programs in sequence that saturated

the CPU, the Sun auditing subsystem generated about 1MB every 10 minutes on a

single-user workstation. This extrapolates to 6MB per hour, or 2514 � 6=:4 � 38K

119

events per hour. Consider that there are 100 patterns in the detector. Then, for one

hour of intense CPU activity, the detector might require the following time to process

the generated audit data:

Fixed overhead = 5:17=2514 � 38000s = 78:15s

Variable overhead = 15�s � 100 � 38000 = 57s

Total time = = 135:15s

Table 6.1 Extrapolating Timing Results to Match 100 Patterns

Thus, for every hour of intense activity, the detector requires � 135s to match

100 patterns. This fraction is 135=3600 � 100 = 3:75% � 4% of the hourly activity.

These results correspond to an unoptimized version of the detector.

6.6.1.1 Analysis

To derive an approximate but useful comparison with other systems consider how

the following characteristics of other systems a�ect these results.

A Uniformly Faster System. If these experiments were run on a system that com-

puted uniformly faster (i.e. for every mix of jobs) then the number of events

being generated per unit time will increase proportionately. However, we would

expect the time to process each event to decrease by approximately the same

proportion. Thus, with in�nite disk logging capacity we would ideally expect

the same performance.

Faster Disk Logging. Assume that the amount of audit trail being generated was

limited by the disk logging capacity of the system and not by the CPU. Then,

on a machine with the same CPU speed but better disk logging the number

of audit events logged per unit time will increase because the CPU will not

120

be suspended from applications until the audit subsystem has written audit

records to disk. However, the rate at which the trail is processed will remain

the same. Thus, the system will experience a greater performance degradation

in this case.

For our experiments this is not a factor because 1MB every 10 minutes is �

2KB/s. However, this e�ect can be taken into consideration in cases where it is

true.

Better Tuned Auditing. The experiments reported in the previous section were done

using an audit trail that logged all events. If the audit events are selected so

that only events referenced in the patterns are logged, then it is conceivable that

the average time to exercise each event against all the patterns will increase. If,

in the untuned case, the disk logging capacity was being saturated, then it is

conceivable that the rate of audit data logging remains the same with a more

�nely tuned auditing. This implies a performance degradation in going from

the untuned to the tuned case. However, this also means that the system is

being better utilized.

6.6.2 Space Requirements

The space requirement of each pattern is depicted in Figure 6.8. The mean size

of the patterns is 17KB.

There are several factors involved in this mean pattern size. The most signi�cant

reason is that the pattern structure is not saved in memory to be used by a common

pattern simulation routine. Instead, the pattern is compiled into its structural de-

scription, which makes each transition responsible for evaluating its guard and moving

tokens from its input states to output states. This results in substantial duplication

of code, once for each transition.

The other reason is that support structure for the implementation of each pat-

tern included dynamically expanding tables and linked lists. Because each pattern

121

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20

KB

Figure 6.8 The size in KB of Each Compiled Pattern

is logically di�erent, with a di�erent de�nition of a \token," these structures were

replicated in each pattern de�nition.

These problems are purely a manifestation of our non-optimized implementation,

and not a limitation of the model. To reduce the space required per pattern, all the

common support code comprising tables, singly and doubly-linked intrusive and non-

intrusive lists can be collected in abstract base classes and speci�c classes derived for

each pattern dynamically at runtime. This provides type safety because of derivation,

while reusing the common code across all derivations. The same strategy can be

applied to reduce the amount of code needed to exercise transitions. Instead of

compiling the evaluation of each transition and its guard separately, transitions can

store their input and output states in their member data. Then, a common procedure

may be used to exercise any transition the same way. Thus, signi�cant space bene�ts

can result from \simulating" the pattern.

122

6.7 Summary

This chapter described a possible architecture for structuring a misuse intrusion

detector based on pattern matching. The structure is client-server4 based in which

the server obtains events and dispatches them to clients (patterns) that implement

the matching procedure speci�c to their structure. Implementing this structure as a

library permits embedding this type of matching within application programs. The

prototype allows the dynamic creation of patterns. These patterns are translated from

a description language into C++ code that realizes the pattern and dynamically links

that code into the application.

4We use this term in a slightly di�erent way than is used in networking. In networking, it usually
denotes a lock-step query/response in which the client makes queries to a server and the server
responds with a reply. In our structure, the client (pattern) makes an initial request to the server
to notify it of the event types that it needs to exercise the pattern, and then receives those events
inde�nitely from the server.

123

7. SUMMARY, CONCLUSIONS AND FUTURE WORK

This dissertation presents a solution to the problem of representing and detecting

computer intrusions. The representation problem is one of encoding intrusions in

a generic, alias-free manner. The basic goal of our work has been to adequately

represent and e�ciently detect the majority of intrusions commonly reported rather

than attempt to represent and detect every conceivable intrusion scenario.

We have been successful in achieving these goals. We have been able to represent

� 88% of the intrusions described in [Bis83, CER, FS90] that have occurred in UNIX

systems. We could not detect � 12% of those vulnerabilities but we argue that

signature detection is not a good choice for such vulnerabilities. Some require more

sophisticated anomaly detection while others, such as passive wiretapping, do not

exhibit a detectable signature [cf. Section 1.2.1].

Based on a prototype implementation of our approach, we derived performance

results that indicate that our approach of using pattern matching to represent and

detect computer intrusions is practical. Intrusion detection systems have not gained

widespread acceptance predominantly because of their space requirements and the

performance impact that is incurred while running them with regular system activ-

ity. We have shown that it is practical to run an intrusion detection system based

on pattern matching, concurrently with other user activity on single-user machines,

without undue degradation in performance. Extrapolation of our experimental results

show that the overhead of matching a signi�cant number of patterns simultaneously

against an audit trail that is generated under heavy load on a typical workstation

should be under 5% of the system CPU performance.

Furthermore, using pattern matching libraries to monitor intrusion signatures

provides a simple, embeddable, and elegant mechanism for intrusion detection. It

124

provides a more natural interface to the representation of signatures than other tech-

niques that need knowledge of specialized tools such as expert system shells. Because

of the low overhead imposed by our approach, it is practical to debug patterns in

a real environment by adding them to the detector while it is running. the ability

to incrementally add patterns also helps in the maintenace of the intrusion detector.

Maintenance of signatures is also easier because they can be maintained in text �les

and as programming language strings. This allows them to be manipulated using

familiar tools such as text editors.

7.1 Experiences

We learned several lessons from this e�ort, which are summarized under three

categories below:

7.1.1 Using Pattern Matching for Intrusion Detection

Extended1 regular expressions augmented to provide context matching and follows se-

mantics are adequate to detect a majority of commonly occurring intrusions.

This is a surprisingly simple yet powerful result. However, because the problem

of matching with context is NP Hard, there are no known solutions that solve the

general version of the problem e�ciently. In practice, however, an exhaustive search

works well for the patterns that are needed to detect intrusions.

Pattern matching may be inappropriate for representing ill-de�ned intrusions.

Pattern matching provides an e�cient mechanism for the detection of well-de�ned

patterns. To deduce abstractions indicative of intrusions from uncertain information,

other mechanisms such as expert systems may be more appropriate. For example, if

an intrusion is indicated only when activities occurring at various locations and times

are correlated, it may not be easy to specify all the correlations in a compact way

using pattern matching alone.

1Those that permit the use of AND directly.

125

7.1.2 Writing Intrusion Patterns

Distilling an incident report into a pattern is involved.

It is nontrivial to translate advisories, for example CERT advisories [CER], into

patterns that can reliably detect those and similar incidents. The process requires a

good understanding of the key essentials of the exploitation to enable the problem to

be abstracted and represented in a generic, alias-free manner.

Writing e�cient signatures may require knowledge of the underlying matching model.

Once a vulnerability is clearly understood it must be written as a pattern descrip-

tion. Often, there are several ways of writing the same pattern that can result in

di�erent matching e�ciencies. The most important fact to bear in mind is the cor-

rect use of invariants [Section 3.2.2] that can delete unneeded tokens from the pattern

graph. The presence of unneeded tokens can degrade runtime performance because

the matching procedure is one of exhaustive search.

Temporally ordered event sequences may make pattern representation much simpler.

Consider as an example the audit trail generated by older versions of SunOS with-

out the BSM patch. The EXECVE record that indicated the start of a new process could

be recorded in this trail after the new process began executing and had generated

part of its own log. Thus, if a pattern was intended to monitor a speci�c activity

of a certain program running with particular privileges there was no e�cient way to

ascertain if the monitoring conditions had been satis�ed, without looking ahead to

retrieve the EXECVE record and its associated data. Patterns were written to always

match for the desired conditions and then ascertain based on the EXECVE record if

the match was to be kept or discarded.

In contrast, if the log was temporally sequenced, a pattern to monitor the condi-

tions could be much simpler. Pre-processing the audit trail can be done to make it

temporally ordered, but this requires extra overhead and may not be feasible to do

at current audit generation rates without an impact on the real-time performance.

126

7.1.3 Using Audit Trails

Application-level auditing is important.

Because audit logs only provide the events that are executed by programs and not

the information manipulated as a result of performing those events, it is not always

possible to deduce the actions of a program. Furthermore, it is extremely di�cult

to invert a low level audit log into higher level program abstractions which are often

application dependent. Because intrusions are de�ned with respect to policies that are

tied closely to application-provided abstractions, it is extremely di�cult to determine

if the policy is violated unless application abstractions can be deduced and used to

base these decisions.

Even if the inversion was possible, it is likely to be computationally expensive

and perhaps needless. Because applications often provide features that correspond

directly to user-level abstractions, they are usually the best place to generate the

audit events.

Auditing must provide a reliable means of detecting higher level events.

For example, in some audit trails it may not be possible to reliably detect when

a process has exited. This may result in many \garbage" tokens in the matcher that

may remain uncollected. This can result in poorer runtime performance.

7.2 Future Work

Our work can be pursued further in one or more of the following directions:

7.2.1 Optimize the Current Implementation.

Interpret patterns. Our prototype implementation described in Chapter 4 compiles a

CPA directly into C++ code that realizes the automaton. The implementation

does not store the pattern graphical structure in memory to use for pattern

matching. Instead, the pattern is compiled into its structural description, which

makes each transition responsible for evaluating its guard and moving tokens

127

from its input states to output states. This results in considerable duplication

of code, once for each transition because each transition has a di�erent guard

expression and a di�erent set of input and output states.

It might be interesting to store the structure of the patterns in memory and

interpret the guard expressions to simulate the behavior of the compiled CPA.

This would permit a single common simulation procedure to simulate all pat-

terns resulting in a much smaller code size of CPAs and the matching subsystem.

It would be interesting to investigate this time/space tradeo�.

Determine Good Order of Combination of Guards. When the guards corresponding

to all transitions with the same event label need to be evaluated, it is not clear

what is the best order in which to enumerate, and thus evaluate them. There

are no semantics to the expressions forming each guard in our model. Theo-

retically, all the expressions in all the guards need to be combined in a speci�c

order to achieve maximum overlap between the expressions. This overlap is

dependent on the probability of occurrence of each expression. Runtime statis-

tics based on the history of evaluations can be maintained to estimate these

probabilities. Rete network generation may have applicability to this problem

and can perhaps be used to compile the guards in a particular order to achieve

better performance.

Investigate a Token Replacement Policy. The Colored Petri net model of matching

described in Chapter 4 uses states and transitions to describe the match. In this

model, states may have an arbitrary number of tokens resident within them.

It may not always be possible to permit this in practice because of memory

limitations. It might be possible that matching is not adversely a�ected if the

capacity of states to hold tokens is restricted and some replacement scheme

put into e�ect that determines and discards tokens when adding a new one. It

might be that common intrusions of interest follow a locality of attack rule with

respect to the tokens, thus resulting in more e�cient match procedures.

128

Determine Practical Bene�ts of Optimizations. It might be worthwhile investigating

through experimentation if the engineering shortcuts presented in Chapter 5

have a signi�cant bene�t on the performance of a system structured around

them. It may be that these shortcuts yield good performance bene�ts for the

kinds of patterns that are currently needed to detect intrusions.

7.2.2 Add Other Features To The Implementation.

Investigate Feasibility of Kernel matching. It might be possible to embed a highly

optimized matcher inside the kernel. This means that system call invocations

no longer need to write audit data to disk. Instead, the detector can be exercised

in the kernel at the point of the call. This results in an intrusion detector that

can be truly real-time because kernel matching removes the latency between

the occurrence of an event and its noti�cation to the detector.

Provide a Friendly Interface to Help Develop Patterns. It has been our experience

that encoding patterns into our description language requires expertise and

experience. It would be bene�cial to provide a GUI interface to assist users in

specifying and editing patterns.

7.2.3 Apply the Pattern Matching Approach to Other Problems.

Investigate Applicability to Distributed Intrusion Detection. How applicable is the p-

attern matching approach to detecting intrusions that can only be detected by

correlating and analyzing information from several sources? For example, our

approach does not bind any semantic meaning to events or the data associated

with events. If event data is augmented to provide a host name and other ma-

chine related information �elds, can patterns be devised that only treat them as

syntactic entities yet work well and e�ciently? Can the fundamental problem

of tracking changed identities across rlogin/rsh/telnet be done using pat-

terns without operating system support? How can heterogeneity be handled

129

using patterns? Does clock skew across machines complicate the description of

patterns hopelessly?

All these questions and more need to be addressed before the viability of the

pattern matching approach to the distributed case can be established.

Investigate Applicability to Specifying Application Level Security Policies. Many secu-

rity experts believe that low level read-write based access control policies on

system objects are inadequate to meet complex application security policy re-

quirements. That is, applications cannot always specify correct subject-object

access behavior using permissible read and write requiremenets on system ob-

jects. Before applications can specify policies that may be monitored on their

behalf by the kernel, there must be a framework to specify these policies in a

generic way. It may be possible to use the framework of pattern speci�cation

developed in this dissertation for that purpose.

7.3 Conclusions

We believe that this dissertation has advanced current knowledge in intrusion

detection by providing insights into the representation and detection issues of a so-

lution using pattern matching. Some of these insights form the crux of Section 3.2

that presents key requirements for any pattern matching solution. The other major

contribution of the thesis is the hierarchy of intrusion signatures presented in Section

3.1. This hierarchy is new in that researchers have thus far focused on the classi�ca-

tion of vulnerabilities rather than the characteristics of observable events that provide

detection capability of these vulnerability exploitations. With this hierarchy one can

refer to intrusion signatures as belonging to a particular class in the hierarchy, which

suggests the runtime detection characteristics of the signature. The hierarchy also

o�ers a di�erent way of viewing intrusion detection, namely in terms of the types of

patterns that can be used to detect intrusions, instead of the generic \anomaly" and

\misuse" approaches.

130

Pattern matching has yielded an e�cient mechanism for the detection of intrusions

of common interest as evidenced by our experimental results in Chapter 6. Our

implementation also suggests a new way of structuring intrusion detection systems,

namely as libraries that can be embedded in applications and that use a call-back

mechanism to invoke application functions. We believe that this thesis has provided

a new approach to intrusion detection and hope that it will spur further work in this

direction.

BIBLIOGRAPHY

131

BIBLIOGRAPHY

[8lg] 8lgm electronic mailing list. Can be retrieved from fileserv@bagpuss.de-
mon.co.uk.

[A+76] R. P. Abbott et al. Security Analysis and Enhancements of Computer
Operating Systems. Technical Report NBSIR 76-1041, Institute for Com-
puter Science and Technology, National Bureau of Standards, 1976.

[Aho90] Alfred V. Aho. Algorithms for Finding Patterns in Strings. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science { VOL A,
Chapter 5, pages 256{300. Elsevier Science Publishers, 1990.

[AHU74] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. The Design
and Analysis of Computer Algorithms. Addison-Wesley, Reading, Mas-
sachusetts, 1974.

[And80] J. P. Anderson. Computer Security Threat Monitoring and Surveillance.
Technical report, James P Anderson Co., Fort Washington, Pennsylvania,
April 1980.

[Asl95] Taimur Aslam. A Taxonomy of Security Faults in the Unix Operating
System. Master's Thesis, Purdue University, Department of Computer
Sciences, August 1995.

[ASU86] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, Reading, Massachusetts, 1986.

[Bez83] Boris Bezier. Software Testing Techniques. Electrical Engineering/Com-
puter Science and Engineering Series. Van Nostrand Reinhold, 1983.

[Bib77] K. J. Biba. Integrity Constraints for Secure Computer Systems. Techni-
cal Report ESD-TR-76-372, USAF Electronic Systems Division, Bedford,
Massachussetts, April 1977.

[Bis83] Matthew Bishop. Security Problems with the UNIX Operating System.
Con�dential Technical Memo, Department of Computer Sciences, Purdue
University, January 1983.

132

[Bis95] Mathew Bishop. UNIX Security: Threats and Solutions. Invited talk
given at the 1995 System Administration, Networking, and Security Con-
ference, April 24{29, 1995.

[BK88] David S. Bauer and Michael E. Koblentz. NIDX { An Expert System for
Real-Time Network Intrusion Detection. In Proceedings of the Computer
Networking Symposium, pages 98{106. IEEE, New York, New York, April
1988.

[BK89] Morris I. Bolsky and David G. Korn. The KornShell Command and
Programming Language. Prentice Hall, Englewood Cli�s, New Jersey,
1989.

[BL73] D. E. Bell and L. J. LaPadula. Secure Computer Systems: Mathemat-
ical Foundations and Model. Technical Report M74-244, The MITRE
Corporation, Bedford, Massachussetts, May 1973.

[BN84] Andrew D. Birrell and Bruce Jay Nelson. Implementing Remote Proce-
dure Calls. ACM Transactions on Computer Systems, 2(1):39{59, Febru-
ary 1984.

[Bug] Bugtraq electronic mailing list. Issued electronically from bugtraq@cri-
melab.com.

[BYG89] R. A. Baeza-Yates and G. H. Gonnet. A New Approach to Text Search-
ing. In Proceedings of the 12th Annual ACM-SIGIR Conference on Infor-
mation Retrieval, pages 168{175, Cambridge, Massachusetts, June 1989.

[CER] CERT Advisories. Available by anonymous ftp from cert.sei.cmu.edu:/p-
ub/cert advisories.

[Cha91] Eugene Charniak. Bayesian Networks Without Tears. AI Magazine,
pages 50{63, Winter 1991.

[Che88] K. Chen. An Inductive Engine for the Acquisition of Temporal Knowl-
edge. Ph.D. Thesis, Department of Computer Science, University of Illi-
nois at Urbana-Champaign, 1988.

[CHS91] Peter Cheeseman, Robin Hanson, and John Stutz. Bayesian Classi�-
cation with Correlation and Inheritance. In 12th International Joint
Conference on Arti�cial Intelligence, August 1991.

[CKS+88] Peter Cheeseman, James Kelly, Matthew Self, John Stutz, Will Taylor,
and Don Freeman. Autoclass: A Bayesian Classi�cation System. In
Proceedings of the Fifth International Conference on Machine Learning,
pages 54{64. Morgan Kaufmann, June 1988.

133

[Coh87] Fred Cohen. Computer Viruses { Theory and Experiments. Computers
& Security, 6:22{35, 1987.

[Com91] Douglas E. Comer. Internetworking with TCP/IP, Volume I. Prentice
Hall, Englewood Cli�s, New Jersey, Second edition, 1991.

[CS70] J. Cocke and J. T. Schwartz. Programming Languages and Their Com-
pilers: Preliminary Notes, Second Revised Version. Courant Institute of
Mathematical Sciences, New York, 1970.

[CW89] David D. Clark and David A. Wilson. Evolution of a Model for Com-
puter Integrity. Report of the Invitational Workshop on Data Integrity,
September 1989.

[Den82] Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley,
Reading, Massachusetts, 1982.

[Den87] Dorothy E. Denning. An Intrusion-Detection Model. In IEEE Transac-
tions on Software Engineering, Number 2, page 222, February 1987.

[Doa92] Justin Doak. Intrusion Detection: The Application of Feature Selection
{ A Comparison of Algorithms, and the Application of a Wide Area
Network Analyzer. Master's Thesis, Department of Computer Science,
University of California, Davis, 1992.

[FHRS90] Kevin L. Fox, Ronda R. Henning, Jonathan H. Reed, and Richard Si-
monian. A Neural Network Approach Towards Intrusion Detection. In
Proceedings of the 13th National Computer Security Conference, pages
125{134, Washington, DC, October 1990.

[FL88] Charles N. Fischer and Richard J. LeBlanc. Crafting a Compiler. Benj-
amin/Cummings, Menlo Park, California, 1988.

[Fly66] M. J. Flynn. Very High-Speed Computing Systems. Proceedings of the
IEEE, 54(12), December 1966.

[For82] Charles L. Forgy. RETE: A Fast Algorithm for the Many Pattern/Many
Object Pattern Match Problem. In Arti�cial Intelligence, Volume 19.
1982.

[FS90] Daniel Farmer and Eugene H. Spa�ord. The COPS Security Checker
System. In Proceedings of the Summer Usenix Conference, pages 165{
170, June 1990.

[Gia92] Joseph C. Giarratano. Clips Version 5.1 User's Guide. NASA, Lyn-
don B. Johnson Space Center, Information Systems Directorate, Software
Technology Branch, March 1992.

134

[GL91] T. D. Garvey and T. F. Lunt. Model based Intrusion Detection. In
Proceedings of the 14th National Computer Security Conference, pages
372{385, October 1991.

[GS91] Simson Gar�nkel and Gene Spa�ord. Practical Unix Security. O'Reilly
and Associates, Sebastopol, California, 1991.

[HCMM92] Naji Habra, B. Le Charlier, A. Mounji, and I. Mathieu. ASAX: Soft-
ware Architecture and Rule-based Language for Universal Audit Trail
Analysis. In Proceedings of ESORICS 92, Toulouse, France, November
1992.

[HLM91] L. T. Heberlein, K. N. Levitt, and B. Mukherjee. A Method To Detect
Intrusive Activity in a Networked Environment. In Proceedings of the
14th National Computer Security Conference, pages 362{371, October
1991.

[HLMS90] R. Heady, G. Luger, A. Maccabe, and M. Servilla. The Architecture of
a Network Level Intrusion Detection System. Technical report, Depart-
ment of Computer Science, University of New Mexico, August 1990.

[Hoa74] C. A. R. Hoare. Monitors: An Operating System Structuring Concept.
Communications of the ACM, 17(10):549{557, 1974.

[HP90] John L. Hennessy and David Patterson. Computer Architecture { A
Quantitative Approach. Morgan Kaufman Publishers, Inc., San Mateo,
California, 1990.

[HU79] John E. Hopcroft and Je�rey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison Wesley, Reading, Mas-
sachusetts, 1979.

[Ilg92] Koral Ilgun. USTAT: A Real-Time Intrusion Detection System for UNIX.
Master's Thesis, Computer Science Department, University of California,
Santa Barbara, July 1992.

[Jen92] Kurt Jensen. Coloured Petri Nets { Basic Concepts I. Springer Verlag,
New York, 1992.

[Kni93] James Robert Knight. Discrete Pattern Matching Over Sequences and
Interval Sets. Ph.D. Thesis, Department of Computer Science, University
of Arizona, August 1993.

[Koz92] John Koza. Genetic Programming: On the Programming of Computers
by means of Natural Selection. MIT Press, Cambridge, Massachusetts,
1992.

135

[KS] Sandeep Kumar and Eugene Spa�ord. A Taxonomy of Common Com-
puter Security Vulnerabilities Based on their Method of Detection. (in
preparation).

[KS94] Sandeep Kumar and Eugene Spa�ord. An Application of Pattern Match-
ing in Intrusion Detection. Technical Report 94-013, Department of Com-
puter Sciences, Purdue University, March 1994.

[KS95] Sandeep Kumar and Eugene H. Spa�ord. A Software Architecture to
Support Misuse Intrusion Detection. Technical Report CSD{TR{95{009,
Department of Computer Sciences, Purdue University, March 1995.

[Lam69] B. W. Lampson. Dynamic Protection Structures. In Proceedings of the
AFIPS Fall Joint Computer Conference, pages 27{38, 1969.

[Lam71] B. W. Lampson. Protection. In Proceedings of the Fifth Annual Prince-
ton Conference on Information Science Systems, pages 437{443, 1971.
Reprinted in Operating System Review, Volume 8, Number 1 (January
1974), pages 18{24.

[Lan92] Linda Lankewicz. A Non-Parametric Pattern Recognition to Anomaly
Detection. Ph.D. Thesis, Tulane University, Department of Computer
Science, 1992.

[LBMC93] Carl E. Landwehr, Alan R. Bull, John P. McDermott, and William S.
Choi. A Taxonomy of Computer Program Security Flaws, with Exam-
ples. Technical Report NRL/FR/5542{93{9591, Naval Research Labora-
tory, Washington, DC 20375{5320, November 1993.

[Lin75] Richard R. Linde. Operating System Penetration. In National Computer
Conference, pages 361{368, 1975.

[LJL+89] Teresa F. Lunt, R. Jagannathan, Rosanna Lee, Alan Whitehurst, and
Sherry Listgarten. Knowledge based Intrusion Detection. In Proceedings
of the Annual AI Systems in Government Conference, Washington, DC,
March 1989.

[LS87] Dennis Longley and Michael Shain. Data and Computer Security: Dic-
tionary of Standards, Concepts, and Terms. Stockton Press, New York,
New York, 1987.

[LTG+92] T. F. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P. G. Neumann,
H. S. Javitz, A. Valdes, and T. D. Garvey. A Real-Time Intrusion Detec-
tion Expert System (IDES) { Final Technical Report. Computer Science
Laboratory, SRI International, Menlo Park, California, February 1992.

[Lun93] Teresa F Lunt. A Survey of Intrusion Detection Techniques. Computers
& Security, 12(4):405{418, June 1993.

136

[LV89] G. E. Liepins and H. S. Vaccaro. Anomaly Detection: Purpose and
Framework. In Proceedings of the 12th National Computer Security Con-
ference, pages 495{504, October 1989.

[MM89] Eugene W. Myers and Webb Miller. Approximate Matching of Regular
Expressions. In Bulletin of Mathematical Biology, Volume 51, pages 5{37,
1989.

[MMA] Arthur B. Maccabe, Ruth McDonald, and Vinay Anand. Learning How
to Characterize Normal Behavior in Local Area Networks.

[Moi] Abha Moitra. Real-Time Audit Log Viewer And Analyzer.

[oDS85] Department of Defense Standard. Department of Defense Trusted Com-
puter System Evaluation Criteria. Number DOD 5200.28-STD. U.S. Gov-
ernment Printing O�ce, December 1985.

[Par90] Graham D. Parrington. Reliable Distributed Programming in C++: The
Arjuna Approach. In USENIX 1990 C++ Conference Proceedings, pages
37{50, 1990.

[Pea88] Judea Pearl. Probabilistic Reasoning in Expert Systems. Morgan Kauf-
man, San Mateo, California, 1988.

[Pet92] Charles Petzold. Programming Windows 3.1. Microsoft Press, Redmond,
Washington, 1992.

[PK92] Phillip A. Porras and Richard A. Kemmerer. Penetration State Transi-
tion Analysis { A Rule-Based Intrusion Detection Approach. In Eighth
Annual Computer Security Applications Conference, pages 220{229.
IEEE Computer Society press, IEEE Computer Society press, Novem-
ber 30 { December 4, 1992.

[Pow95] Richard Power. Current and Future Danger. Computer Security Insti-
tute, San Francisco, California, 1995.

[Pro94] Paul Proctor. Audit Reduction and Computer Misuse Detection. Talk
given at the Sixth Annual Computer Security Incident Handling Work-
shop, 1994.

[Rag93] Stephen A. Rago. UNIX System V Network Programming. Addison-
Wesley, Reading, Massachusetts, 1993.

[RS91] Deborah Russell and G. T. Gangemi Sr. Computer Security Basics.
O'Reilly & Associates, Inc., Sebastopol, California, December 1991.

137

[SBD+91] S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T. Heberlein,
C. Ho, K. N. Levitt, B. Mukherjee, S. E. Smaha, T. Grance, D. M.
Teal, and D. Mansur. DIDS (Distributed Intrusion Detection System) -
Motivation, Architecture, and an Early Prototype. In Proceedings of the
14th National Computer Security Conference, pages 167{176, October
1991.

[SG91] Shiuhpyng Winston Shieh and Virgil D. Gligor. A Pattern Oriented
Intrusion Model and its Applications. In Proceedings of the 1991 IEEE
Computer Society Symposium on Research in Security and Privacy, pages
327{342, May 1991.

[SG94] Abraham Silberschatz and Peter B. Galvin. Operating System Concepts.
Addison-Wesley, Reading, Massachusetts, Fourth edition, 1994.

[SH82] John F. Schoch and Jon A. Hupp. The \Worm" Programs | Early
Experience with a Distributed Computation. Communications of the
ACM, 25(3):172{180, March 1982.

[Sma88] Stephen E. Smaha. Haystack: An Intrusion Detection System. In Fourth
Aerospace Computer Security Applications Conference, pages 37{44, Tra-
cor Applied Science Inc., Austin, Texas, December 1988.

[Sma92] Steve Smaha. Questions about CMAD. In Proceedings of the Workshop
on Future Directions in Computer Misuse and Anomaly Detection, pages
17{21, Davis, California, March 1992.

[Sma95] Steve Smaha. Talk given at the third Computer Misuse and Anomaly
Detection Workshop (CMAD III) in Sonoma, California, January 1995.

[Spa89] Eugene Spa�ord. Crisis and Aftermath. Communications of the ACM,
32(6):678{687, June 1989.

[SS92] Steven R. Snapp and Stephen E. Smaha. Signature Analysis Model Def-
inition and Formalism. In Proceedings of the Fourth Workshop on Com-
puter Security Incident Handling, Denver, Colorado, August 1992.

[SSH93] David R. Sa�ord, Douglas L. Schales, and David K. Hess. The TAMU
Security Package: An Outgoing Response to Internet Intruders in an
Academic Environment. In Proceedings of the Fourth USENIX Security
Symposium, pages 91{118, Santa Clara, California, 1993.

[SSHW88] M. Sebring, E. Shellhouse, M. Hanna, and R. Whitehurst. Expert Sys-
tems in Intrusion Detection: A Case Study. In Proceedings of the 11th
National Computer Security Conference, October 1988.

[Sto88] Cli�ord Stoll. Stalking the Wily Hacker. Communications of the ACM,
31(5):484{497, May 1988.

138

[Str91] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,
Reading, Massachusetts, Second edition, 1991.

[Sun93a] SunPro, Mountain View, California. SPARCompiler C++ 4.0 Tools.h++
Class Library, December 1993. Part No: 801-4317-10.

[Sun93b] SunSoft, Mountain View, California. Solaris SHIELD Basic Security
Module Revision A, October 1993. Part No: 801-5285-10.

[TCL90] Henry S. Teng, Kaihu Chen, and Stephen C Lu. Security Audit Trail
Analysis Using Inductively Generated Predictive Rules. In Proceedings
of the Sixth Conference on Arti�cial Intelligence Applications, pages 24{
29, Piscataway, New Jersey, March 1990. IEEE.

[Tho87] Ken Thompson. Re
ections on Trusting Trust. Communications of the
ACM, 1(3):21{31, July 1987.

[Wet93] Bradford R. Wetmore. Paradigms for the Reduction of Audit Trails.
Master's Thesis, University of California, Davis, 1993.

[WF74] Robert A. Wagner and Michael J. Fischer. The String-to-String Cor-
rection Problem. In Journal of the ACM, Volume 21, pages 168{178,
January 1974.

[Win92] Patrick HenryWinston. Arti�cial Intelligence. AddisonWesley, Reading,
Massachusetts, Third edition, 1992.

[WM91] Sun Wu and Udi Manber. Fast Text Searching With Errors. Techni-
cal Report TR 91-11, Department of Computer Science, University of
Arizona, 1991.

APPENDIX

139

APPENDIX

SOME EXAMPLE INTRUSION PATTERNS

Here we describe some signature patterns that we used while deriving performance

results for the prototype implementation. These signatures are translated into C++

code that do the matching. We have included the translated C++ code for the �rst

pattern. The translation of other patterns is similar and is omitted for brevity.

1. Representing Clarke Wilson monitoring triples [CW89]. The purpose of these

triples is described in Section 3.2.1. Figure 3.3 is a pictorial representation of

the signature.

1 pattern CW "Clarke Wilson Monitoring Triples" priority 10

2 int PID, EUID; /* pattern local vars, may be initialized. */

3 str PROG, FILE;

PROG is a token local variable that stores the program name corresponding to

the process id PID, FILE stores the �le name that PROG opens for writing. EUID

stores the e�ective user id of PROG.

4 state start, after_exec, violation;

5 post_action {

6 printf("CWilson violated for file %s, PID %d, EUID %d\n",

7 FILE, PID, EUID);

8 }

The post action is code that is executed when the pattern is successfully matched.

9 neg invariant first_inv

10 state start_inv, final;

11

12 trans exit(EXIT)

13 <- start_inv;

140

14 -> final;

15 |_ { PID = this[PID]; }

16 end exit;

17 end first_inv;

The invariant speci�es the garbage collection of partial matches once the process

has exited. What follows is the pattern description. The pattern matches all

EXECVE records to monitor the creation of all processes in the system. Once

a process is created, the pattern attempts to match all possible ways that the

process could modify a �le. These could be:

� Open a �le to read and create it if it doesn't exist. This is handled in

transition mod1.

� Open a �le to read and truncate if it exists. Create the �le if it doesn't

exist. This is handled in transition mod2.

�and so on for all the other valid audit record types involving an open

that might change the �le.

� Delete a �le. This is handled in transition mod12.

18 trans exec(EXECVE) /* EXECVE is the event type */

19 <- start;

20 -> after_exec;

21 |_ { this[ERR] = 0 && PID = this[PID] && PROG = this[PROG] &&

22 EUID = this[EUID]; }

23 end exec;

24

25 trans mod1(OPEN_RC)

26 <- after_exec;

27 -> violation;

28 |_ { this[ERR] = 0 && PID = this[PID] && FILE = this[OBJ] &&

29 disallowed(EUID, PROG, FILE); }

30 end mod1;

31

32 trans mod2(OPEN_RTC)

33 <- after_exec;

34 -> violation;

35 |_ { this[ERR] = 0 && PID = this[PID] && FILE = this[OBJ] &&

36 disallowed(EUID, PROG, FILE); }

141

37 end mod2;

38

39 trans mod3(OPEN_RT)

40 <- after_exec;

41 -> violation;

42 |_ { this[ERR] = 0 && PID = this[PID] && FILE = this[OBJ] &&

43 disallowed(EUID, PROG, FILE); }

44 end mod3;

45

46 trans mod4(OPEN_RW)

47 <- after_exec;

48 -> violation;

49 |_ { this[ERR] = 0 && PID = this[PID] && FILE = this[OBJ] &&

50 disallowed(EUID, PROG, FILE); }

51 end mod4;

52

53 trans mod5(OPEN_RWC)

54 <- after_exec;

55 -> violation;

56 |_ { this[ERR] = 0 && PID = this[PID] && FILE = this[OBJ] &&

57 disallowed(EUID, PROG, FILE); }

58 end mod5;

59

60 trans mod6(OPEN_RWTC)

61 <- after_exec;

62 -> violation;

63 |_ { this[ERR] = 0 && PID = this[PID] && FILE = this[OBJ] &&

64 disallowed(EUID, PROG, FILE); }

65 end mod6;

66

67 trans mod7(OPEN_RWT)

68 <- after_exec;

69 -> violation;

70 |_ { this[ERR] = 0 && PID = this[PID] && FILE = this[OBJ] &&

71 disallowed(EUID, PROG, FILE); }

72 end mod7;

73

74 trans mod8(OPEN_W)

75 <- after_exec;

76 -> violation;

77 |_ { this[ERR] = 0 && PID = this[PID] && FILE = this[OBJ] &&

78 disallowed(EUID, PROG, FILE); }

79 end mod8;

80

81 trans mod9(OPEN_WC)

82 <- after_exec;

142

83 -> violation;

84 |_ { this[ERR] = 0 && PID = this[PID] && FILE = this[OBJ] &&

85 disallowed(EUID, PROG, FILE); }

86 end mod9;

87

88 trans mod10(OPEN_WTC)

89 <- after_exec;

90 -> violation;

91 |_ { this[ERR] = 0 && PID = this[PID] && FILE = this[OBJ] &&

92 disallowed(EUID, PROG, FILE); }

93 end mod10;

94

95 trans mod11(OPEN_WT)

96 <- after_exec;

97 -> violation;

98 |_ { this[ERR] = 0 && PID = this[PID] && FILE = this[OBJ] &&

99 disallowed(EUID, PROG, FILE); }

100 end mod11;

101

102 trans mod12(UNLINK)

103 <- after_exec;

104 -> violation;

105 |_ { this[ERR] = 0 && PID = this[PID] && FILE = this[OBJ] &&

106 disallowed(EUID, PROG, FILE); }

107 end mod12;

108 end CW;

The translation of the signature into C++ code by the prototype results in the

following:

1 #include <stream.h> // -*- Mode: c++; truncate-lines: t; -*-

2

3 #include <assert.h>

4 #include <fstream.h>

5 #include <stdlib.h>

6 #include "utils.h"

7 #include "C2_Server.h"

8 #include <stdarg.h> // va_list, va_start...

The token local variables of the pattern become private data members of the

class C2 CW Token. The class name C2 CW Token is a concatenation of three

terms, C2, which signi�es that the pattern matches against a C2 audit trail, CW,

143

for the name of the pattern, and Token as a mnemonic. An application can use

several instantiations of the library simultaneously such as an instantiation for

IP datagrams and an instantiation for C2 audit trails. The naming scheme we

have used allows the pattern name space to be local to the event stream the

pattern is matched against. This allows the speci�cation of the same pattern

name for a pattern that matches against di�erent event streams.

The enum field_names allows token local variables to be referred to symboli-

cally.

9 class C2_CW_Token

10 {

11 int PID;

12 int EUID;

13 Str PROG;

14 Str FILE;

15 enum field_names

16 { /* enum values must start at 1 (?) */

17 field_PID = 1,

18 field_EUID = 2,

19 field_PROG = 3,

20 field_FILE = 4

21 };

Because the semantics of token local variables distinguish between uninstan-

tiated and instantiated variable states, a bit vector is maintained that stores

this value for each token local variable. A value of 1 for the bit indicates that

the variable is instantiated. The following mapping between field num and the

array index in instantiated field helps to understand the expression used

to index it. As field num varies from 1..32,33..64 the index into the array

instantiated field varies as 0..0,1..1. This suggests the indexing expres-

sion (x%32 == 0) ? (x=32 � 1) : (x=32). The corresponding bit within the

index is then field num� 1%32.

22 unsigned int instantiated[1]; // array size to store 4 fields

23 int instantiated_field(int field_num)

24 {

144

25 assert(field_num <= 4);

26 return instantiated[field_num % (sizeof(int) * 8) == 0 ?

27 field_num / (sizeof(int) * 8) - 1 :

28 field_num / (sizeof(int) * 8)] &

29 (1 << (field_num - 1) % (sizeof(int) * 8));

30 }

31

32 void set_instantiated_field(int field_num)

33 {

34 assert(field_num <= 4);

35 return instantiated[field_num % (sizeof(int) * 8) == 0 ?

36 field_num / (sizeof(int) * 8) - 1 :

37 field_num / (sizeof(int) * 8)] |=

38 (1 << (field_num - 1) % (sizeof(int) * 8));

39 }

40 public:

Each token in the pattern is linked on two doubly-linked lists. One list groups

all the tokens resident in a pattern state. This corresponds to the member data

�elds next_state and prev_state. The other links all the tokens derived from

the root token that was duplicated from the start state. When the invariant

is satis�ed, all these tokens are destroyed. This is called the sibling list and

corresponds to the member data �elds next_sib and prev_sib. Both the lists

are intrusive [Str91, Chapter 8].

41 C2_CW_Token *next_sib, *prev_sib;

42

43 /* doubly linked list of tokens resident in a state */

44 C2_CW_Token *next_state, *prev_state;

45

46 static C2_CW_Token *unify_toks(int num_toks,C2_CW_Token*...);

47

48 C2_CW_Token()

49 {

50 int i;

51 for (i = 0; i < 1; i++)

52 instantiated[i] = 0;

53 next_sib = prev_sib = NULL;

54 next_state = prev_state = NULL;

55 }

145

Assignment to token local variables involves determining if the variable has

already been instantiated. If the variable has not already been instantiated,

assignment is normal. If the variable has been instantiated, assignment is the

same as equality. Assignment in our model is implemented as uni�cation.

56 int assign_PID(int val)

57 {

58 return instantiated_field(field_PID) ? (PID == val) :

59 (PID = val, set_instantiated_field(field_PID), 1);

60 }

61

62 int get_PID()

63 {

64 return PID;

65 }

66

67 int assign_EUID(int val)

68 {

69 return instantiated_field(field_EUID) ?

70 (EUID == val) :

71 (EUID = val, set_instantiated_field(field_EUID), 1);

72 }

73

74 int get_EUID()

75 {

76 return EUID;

77 }

78

79 int assign_PROG(Str val)

80 {

81 return instantiated_field(field_PROG) ?

82 (strcmp(PROG, val) == 0) :

83 (PROG = crcp(val),

84 set_instantiated_field(field_PROG), 1);

85 }

86

87 Str get_PROG()

88 {

89 return PROG;

90 }

91

92 int assign_FILE(Str val)

93 {

94 return instantiated_field(field_FILE) ?

95 (strcmp(FILE, val) == 0) :

146

96 (FILE = crcp(val),

97 set_instantiated_field(field_FILE), 1);

98 }

99

100 Str get_FILE()

101 {

102 return FILE;

103 }

When a token is duplicated, it is not placed in any list by default. That is, it

is placed neither in any state, nor is it associated with any root token.

104 C2_CW_Token *dup()

105 {

106 C2_CW_Token *t = new C2_CW_Token;

107 assert(t != NULL);

108 *t = *this;

109 t->next_sib = t->prev_sib = NULL;

110 t->next_state = t->prev_state = NULL;

111 return t;

112 }

This function duplicates a token tok and puts the duplicate in the same sibling

queue as tok.

113 C2_CW_Token *dup_n_link_after(C2_CW_Token * tok)

114 {

115 C2_CW_Token *t = dup();

116 t->next_sib = tok->next_sib;

117 t->prev_sib = tok;

118 tok->next_sib = t;

119 t->next_state = t->prev_state = NULL;

120 if (t->next_sib != NULL)

121 t->next_sib->prev_sib = t;

122 return t;

123 }

124

125 ~C2_CW_Token()

126 {

127 }

This function deletes a token from its state list. Each token knows which state

it belongs to (not strictly true) and can therefore delete itself from that list.

147

128 int delete_from_state_list()

129 {

130 /* there's always a dummy element in the list, therefore

131 there's always an element before this one in the

132 linked list */

133 prev_state->next_state = next_state;

134 if (next_state != NULL)

135 next_state->prev_state = prev_state;

136

137 return 1;

138 }

This deletes a token from its sibling list.

139 int delete_from_sibling_list()

140 {

141 /* this is a pure doubly linked list, therefore there's not

142 always an element before or after this one in the

143 linked list */

144 if (prev_sib != NULL)

145 prev_sib->next_sib = next_sib;

146 if (next_sib != NULL)

147 next_sib->prev_sib = prev_sib;

148

149 return 1;

150 }

151

152 int del()

153 {

154 delete_from_state_list();

155 delete_from_sibling_list();

156 delete this;

157

158 return 1;

159 }

160

161 int delete_all_siblings()

162 {

163 /* as above + walk down the sibling chain & delete every

164 token. These tokens might also be in state lists from

165 which they must be removed before being deleted */

166 C2_CW_Token *curr, *prev;

167

168 /* go to one end of the linked list */

169 for (prev = this; prev->next_sib != NULL;

170 prev = prev->next_sib);

148

171 for (curr = prev->prev_sib; curr != NULL;

172 prev = curr, curr = curr->prev_sib)

173 {

174 prev->delete_from_state_list();

175 delete prev;

176 }

177

178 prev->delete_from_state_list();

179 delete prev;

180

181 return 1;

182 }

183

184 int dbg()

185 {

186 cerr << "PID = ";

187 if (instantiated_field(field_PID))

188 cerr << PID;

189 else

190 cerr << "(unknown)";

191 cerr << ".";

192

193 cerr << "EUID = ";

194 if (instantiated_field(field_EUID))

195 cerr << EUID;

196 else

197 cerr << "(unknown)";

198 cerr << ".";

199

200 cerr << "PROG = ";

201 if (instantiated_field(field_PROG))

202 cerr << PROG;

203 else

204 cerr << "(unknown)";

205 cerr << ".";

206

207 cerr << "FILE = ";

208 if (instantiated_field(field_FILE))

209 cerr << FILE;

210 else

211 cerr << "(unknown)";

212 cerr << ".";

213

214 cerr << endl;

215 return 1;

216 }

149

217

218 };

A state contains two linked lists, one to store the tokens currently present in it

(toktab), the other, (incoming toks), to store the tokens that will enter the

state when the pattern is clocked. The simulation of the pattern takes place

in discrete steps. At each step, all the enabled transitions are tested against

the incoming event to determine if some tokens satisfy the transition guard and

need to be duplicated and moved to successor states of the transition. Then all

such successful tokens across all the transitions are moved into successor states

together. This moving is done by function clock() for each state.

219 class C2_CW_State : public State

220 {

221 public:

222 PDL_Ilist <C2_CW_Token> toktab; /* incorporate token replace-

223 ment policy here */

224 PDL_Ilist <C2_CW_Token> incoming_toks;

225 ~C2_CW_State()

226 {

227 }

228

229 int clock()

230 {

231 if (incoming_toks.empty())

232 return 1;

233

234 /* Move all the tokens in incoming_toks to toktab

235 in one fell swoop */

236 toktab.push_chain(incoming_toks.chain());

237 incoming_toks.reset();

238 return 1;

239 }

240

241 int dbg()

242 {

243 C2_CW_Token *t;

244 cerr << "Tokens in state are:\n";

245 for(t = toktab.first(); t != NULL; t = t->next_state)

246 t->dbg();

247 cerr << "\nTokens awaiting entry into the state are:\n";

248 for (t = incoming_toks.first(); t != NULL;

150

249 t = t->next_state) t->dbg();

250 return 1;

251 }

252

253 };

This class implements the structure of the pattern. The pattern has �ve states,

including invariant states: start, after_exec, violation, start_inv and

final. The data member serv points to the server which dispatches events to

it. When the pattern is created, it requests the server to queue it on each event

queue that is the label of some transition in the pattern. This tells the server to

dispatch those events to the pattern. The linking on the server queues is done

by means of intrusive lists, i.e. the links are provided by the pattern. This

pattern requests for the events EXECVE, OPEN_RC, OPEN_RTC, OPEN_RT, OPEN_RW,

OPEN_RWC, OPEN_RWTC,OPEN_RWT,OPEN_W, OPEN_WC,OPEN_WTC, OPEN_WT, UNLINK,

EXIT.

254 class C2_CW : public C2_Pattern

255 {

256 C2_CW_State start+, after_exec, violation, start_inv, final;

257

258 C2_Pattern *next_EXECVE, *next_OPEN_RC, *next_OPEN_RTC,

259 *next_OPEN_RT, *next_OPEN_RW, *next_OPEN_RWC,

260 *next_OPEN_RWTC, *next_OPEN_RWT, *next_OPEN_W,

261 *next_OPEN_WC, *next_OPEN_WTC, *next_OPEN_WT,

262 *next_UNLINK, *next_EXIT;

263 C2_Server *serv;

264

265 public:

266 void print_dbg()

267 {

268 cerr << "I am in pattern C2_CW" << endl;

269 cerr << "State start:" << endl;

270 start.dbg();

271 cerr << "State after_exec:" << endl;

272 after_exec.dbg();

273 cerr << "State violation:" << endl;

274 violation.dbg();

275 cerr << "State start_inv:" << endl;

276 start_inv.dbg();

151

277 cerr << "State final:" << endl;

278 final.dbg();

279

280 }

281

282 void PatProc(Event * e);

283 void restart(void);

284 int num_toks();

285 char *name()

286 {

287 return "CW";

288 }

289

290 C2_CW(C2_Server * S)

291 {

292 serv = S;

293 start.toktab.push(new C2_CW_Token);

294 S->thread_on_events(this, 14, C2event_EXECVE,

295 C2event_OPEN_RC, C2event_OPEN_RTC, C2event_OPEN_RT,

296 C2event_OPEN_RW, C2event_OPEN_RWC, C2event_OPEN_RWTC,

297 C2event_OPEN_RWT, C2event_OPEN_W, C2event_OPEN_WC,

298 C2event_OPEN_WTC, C2event_OPEN_WT, C2event_UNLINK,

299 C2event_EXIT);

300 }

301 };

This function takes an arbitrary number of tokens and uni�es them to get a

new \uni�ed" token. Let the token have m variables v1 : : : vm. By uni�cation

(denoted here by \) of tokens t1 : : : tn we mean that 8vi, if any vi has been

instantiated to a value, then all tis must have the same value for vi. The uni�ed

token has that value for vi.

302 C2_CW_Token *C2_CW_Token::unify_toks(int num_toks,

303 C2_CW_Token *tok1...)

304 {

305 typedef C2_CW_Token *C2_CW_TokenP;

306 static C2_CW_Token **tokarr = new C2_CW_TokenP[9];

307 static int tokarr_sz = 9;

308 int i, j;

309

310 if (num_toks > tokarr_sz)

311 {

312 /* resize the static array */

152

313 C2_CW_Token **t = new C2_CW_TokenP[num_toks];

314 tokarr_sz = num_toks;

315 delete[] tokarr;

316 tokarr = t;

317 }

318

319 // extract the varargs into tokarr

320 va_list ap;

321 va_start(ap, tok1);

322 for (i = 0; i < num_toks; i++)

323 {

324 if (i == 0)

325 tokarr[i] = tok1;

326 else

327 tokarr[i] = va_arg(ap, C2_CW_TokenP);

328 }

329 va_end(ap);

330

331 C2_CW_Token *newtok = new C2_CW_Token;

332 // try to unify the token local var symtab[i]->symname()

333 for (i = 0; i < num_toks; i++)

334 {

335 /*

336 * find the first token with the instantiated local var

337 * symtab[i]->symname()

338 */

339 if (tokarr[i]->instantiated_field(field_PID))

340 break;

341 }

342 if (i < num_toks)

343 {

344 for (j = i + 1; j < num_toks; j++)

345 if (tokarr[j]->instantiated_field(field_PID) &&

346 tokarr[i]->PID != tokarr[j]->PID)

347 {

348 delete newtok;

349 return 0;

350 }

351 }

352 else

353 {

354 /* this field is already marked uninstantiated by the

355 class constructor. It unifies successfully across all

356 tokens */

357 }

358

153

359 // try to unify the token local var symtab[i]->symname()

360 for (i = 0; i < num_toks; i++)

361 {

362 /*

363 * find the first token with the instantiated local var

364 * symtab[i]->symname()

365 */

366 if (tokarr[i]->instantiated_field(field_EUID))

367 break;

368 }

369 if (i < num_toks)

370 {

371 for (j = i + 1; j < num_toks; j++)

372 if (tokarr[j]->instantiated_field(field_EUID) &&

373 tokarr[i]->EUID != tokarr[j]->EUID)

374 {

375 delete newtok;

376 return 0;

377 }

378 }

379 else

380 {

381 /* this field is already marked uninstantiated by the

382 class constructor. It unifies successfully across all

383 tokens */

384 }

385

386 // try to unify the token local var symtab[i]->symname()

387 for (i = 0; i < num_toks; i++)

388 {

389 /*

390 * find the first token with the instantiated local var

391 * symtab[i]->symname()

392 */

393 if (tokarr[i]->instantiated_field(field_PROG))

394 break;

395 }

396 if (i < num_toks)

397 {

398 for (j = i + 1; j < num_toks; j++)

399 if (tokarr[j]->instantiated_field(field_PROG) &&

400 tokarr[i]->PROG != tokarr[j]->PROG)

401 {

402 delete newtok;

403 return 0;

404 }

154

405 }

406 else

407 {

408 /* this field is already marked uninstantiated by the

409 class constructor. It unifies successfully across all

410 tokens */

411 }

412

413 // try to unify the token local var symtab[i]->symname()

414 for (i = 0; i < num_toks; i++)

415 {

416 /*

417 * find the first token with the instantiated local var

418 * symtab[i]->symname()

419 */

420 if (tokarr[i]->instantiated_field(field_FILE))

421 break;

422 }

423 if (i < num_toks)

424 {

425 for (j = i + 1; j < num_toks; j++)

426 if (tokarr[j]->instantiated_field(field_FILE) &&

427 tokarr[i]->FILE != tokarr[j]->FILE)

428 {

429 delete newtok;

430 return 0;

431 }

432 }

433 else

434 {

435 /* this field is already marked uninstantiated by the

436 class constructor. It unifies successfully across all

437 tokens */

438 }

439

440 return newtok;

441 }

442

443 void C2_CW::PatProc(Event * e)

444 {

445 int i, j, succ;

446

447 C2_CW_Token *unified_tok, *unified_evaled_tok, *tok;

155

This table contains pointers to all the tokens that reside in nodup states and that

successfully participated in a transition �ring. These tokens must be destroyed

before exiting the function.

448 static PTable <C2_CW_Token *> toks_in_nodup_states;

449 C2_CW_Token *i0, *i1, *i2, *i3, *i4, *i5, *i6, *i7,

450 *i8, *i9, *i10;

451 switch (e->type())

452 {

All the transitions in the pattern of type EXECVE will be exercised in this switch

case. The pattern has only one such transition, named exec. There's a pointer

downcast from e, of type Event, to eve of type C2event EXECVE.

453 case C2event_EXECVE:

454 {

455 C2Event_EXECVE *eve = (C2Event_EXECVE *) e;

456

The input state of transition exec is start. The transition has only one input

state.

457 // Transition exec

458 for(i0 = start.toktab.first(); i0 != NULL;

459 i0 = i0->next_state)

460 {

461 unified_tok = i0->dup();

462

463 /* eval this guard for this token and event */

464 succ = ((((eve->ERR() == 0) &&

465 unified_tok->assign_PID(eve->PID())) &&

466 unified_tok->assign_PROG(eve->PROG())) &&

467 unified_tok->assign_EUID(eve->EUID()));

468

469 if (!succ)

470 {

471 delete unified_tok;

472 continue;

473 }

474 else

475 unified_evaled_tok = unified_tok;

476

156

477 /* put a copy of a succ token in every out state of

478 this transition */

479 after_exec.incoming_toks.push(

480 unified_evaled_tok->dup_n_link_after(

481 unified_evaled_tok));

Because this transition indicates the beginning of a match, duplicates of its

successful token are also placed in the start state of each invariant.

482 /* this transition has one of its inputs from a

483 start state */

484 start_inv.incoming_toks.push(

485 unified_evaled_tok->dup_n_link_after(

486 unified_evaled_tok));

487 unified_evaled_tok->delete_from_sibling_list();

488 delete unified_evaled_tok;

489

490 }

491

492 toks_in_nodup_states.del_objs_uniquely();

493 after_exec.clock();

494 start_inv.clock();

495 while ((i0 = final.toktab.first()) != NULL)

496 {

497 i0->delete_all_siblings();

498 }

499 }

500 break;

Similarly for all transitions labeled with the event OPEN RC.

501 case C2event_OPEN_RC:

502 {

503 C2Event_OPEN_RC *eve = (C2Event_OPEN_RC *) e;

504

505 // Transition mod1

506 for (i0 = after_exec.toktab.first(); i0 != NULL;

507 i0 = i0->next_state)

508 {

509 unified_tok = i0->dup();

510

511 /* eval this guard for this token and event */

512 succ = ((((eve->ERR() == 0) &&

513 unified_tok->assign_PID(eve->PID())) &&

157

514 unified_tok->assign_FILE(eve->OBJ())) &&

515 disallowed(unified_tok->get_EUID(),

516 unified_tok->get_PROG(),

517 unified_tok->get_FILE()));

518

519 if (!succ)

520 {

521 delete unified_tok;

522 continue;

523 }

524 else

525 unified_evaled_tok = unified_tok;

526

527 /* put a copy of a succ token in every out state

528 of this transition */

529 violation.incoming_toks.push(

530 unified_evaled_tok->dup_n_link_after(i0));

531

532 delete unified_evaled_tok;

533 }

534

535 toks_in_nodup_states.del_objs_uniquely();

536 violation.clock();

537 while ((i0 = final.toktab.first()) != NULL)

538 {

539 i0->delete_all_siblings();

540 }

541 }

542 break;

And so on for the other transitions. We skip them for brevity.

543 case C2event_OPEN_RTC:

544 {

545 <similarly>

546 }

547 break;

548

549 case C2event_OPEN_RT:

550 {

551 <similarly>

552 }

553 break;

554

555 case C2event_OPEN_RW:

556 {

158

557 <similarly>

558 }

559 break;

560

561 case C2event_OPEN_RWC:

562 {

563 <similarly>

564 }

565 break;

566

567 case C2event_OPEN_RWTC:

568 {

569 <similarly>

570 }

571 break;

572

573 case C2event_OPEN_RWT:

574 {

575 <similarly>

576 }

577 break;

578

579 case C2event_OPEN_W:

580 {

581 <similarly>

582 }

583 break;

584

585 case C2event_OPEN_WC:

586 {

587 <similarly>

588 }

589 break;

590

591 case C2event_OPEN_WTC:

592 {

593 <similarly>

594 }

595 break;

596

597 case C2event_OPEN_WT:

598 {

599 <similarly>

600 }

601 break;

602

159

603 case C2event_UNLINK:

604 {

605 <similarly>

606 }

607 break;

This transition is part of the pattern invariant. Its code is similar to that of the

other transitions except that tokens that are placed in the output place of this

transition end up in the invariant �nal state. A token reaching the invariant

�nal state signi�es the successful matching of the invariant. This means that

for that particular token, all its \siblings" must be destroyed. The siblings of

this token is the equivalence class of all the tokens that descended (result of

duplicating a token, duplicating its duplicate and so on) from the root token.

608 case C2event_EXIT:

609 {

610 C2Event_EXIT *eve = (C2Event_EXIT *) e;

611

612 // Transition exit

613 for (i0 = start_inv.toktab.first(); i0 != NULL;

614 i0 = i0->next_state)

615 {

616 unified_tok = i0->dup();

617

618 /* eval this guard for this token and event */

619 succ = unified_tok->assign_PID(eve->PID());

620

621 if (!succ)

622 {

623 delete unified_tok;

624 continue;

625 }

626 else

627 unified_evaled_tok = unified_tok;

628

629 /* put a copy of a succ token in every out state

630 of this transition */

631 final.incoming_toks.push(

632 unified_evaled_tok->dup_n_link_after(i0));

633

634 delete unified_evaled_tok;

635 }

160

636

637 toks_in_nodup_states.del_objs_uniquely();

638 final.clock();

The while loop implements what was described in the previous paragraph.

639 while ((i0 = final.toktab.first()) != NULL)

640 {

641 i0->delete_all_siblings();

642 }

643 }

644 break;

645

646 } /* end switch */

This is the post action. At the end of every simulation step, the �nal state is

checked for tokens. This signals a pattern match. For each such token, the post

action is executed.

647 // Post Action

648 for (i0 = violation.toktab.first(); i0 != NULL;

649 i0 = i0->next_state)

650 {

651 unified_tok = i0;

652 printf("CWilson violated for file %s, PID %d, EUID %d\n",

653 unified_tok->get_FILE(), unified_tok->get_PID(),

654 unified_tok->get_EUID());

655

656 // destroy the token and rm from lists

657 i0->del();

658 }

659 }

We de�ne the routine create_pattern to be of external C linkage. This pro-

vides a �xed function name to call to create a pattern. When a pattern needs

to be created from the application program, the the event server, for example,

C2_Server, is given a �le name that contains the pattern description. The server

then parses the pattern description into C++ code (all this code), compiles the

C++ code, and dynamically links it into the application. At this point the server

creates a pattern object by looking for the function symbol create_pattern in

161

the shared library just linked, and calls it. If create_pattern was not de�ned

to be of external C linkage, its name would be mangled and it would be more

tedious to create a new pattern object.

660 extern "C"

661 {

662 C2_CW *create_pattern(C2_Server * S);

663 }

664

665 C2_CW *create_pattern(C2_Server * S)

666 {

667 cerr << "Inside create pattern." << endl;

668 return new C2_CW(S);

669 }

2. Privileged programs may not be permitted to follow symbolic links on opening

�les for reading/writing. This signature may indirectly detect the following

exploitations:

� lpr is made to dump a privileged �le to the printer through a symlink.

� /bin/mail and other programs are fooled into writing to arbitrary places

because the name of the temporary �le they create for internal use can be

guessed. A link with this temporary name can be created that points to

strange places.

This pattern is very similar in structure to the previous one. The function

islink tests to see if a pathname is a link. In this de�nition, a pathname is a

link if it is a symbolic link or if it is a regular �le and the link count of that �le

inode is > 1.

1 pattern Dont_Follow_Symlinks "" priority 7

2 state start, after_open;

3 int PID;

4 str FILE;

5 post_action

6 {

7 printf("Privileged process %d opened link %s.\n", PID, FILE);

8 }

162

For any process with an e�ective uid of 0,
ag all successful opens to path-

names that are links. A successful operation is denoted by the condition

this[ERR] = 0. Each of the transitions below is a di�erent way of opening

a �le. The di�erence between them is the set of arguments passed to the open

system call.

9 trans open5(OPEN_R)

10 <- start;

11 -> after_open;

12 |_ { this[ERR] = 0 && this[EUID] = 0 && islink(this[OBJ]) &&

13 FILE = this[OBJ] && PID = this[PID]; }

14 end open5;

15

16 trans open1(OPEN_RC)

17 <- start;

18 -> after_open;

19 |_ { this[ERR] = 0 && this[EUID] = 0 && islink(this[OBJ]) &&

20 FILE = this[OBJ] && PID = this[PID]; }

21 end open1;

22

23 trans open3(OPEN_RT)

24 <- start;

25 -> after_open;

26 |_ { this[ERR] = 0 && this[EUID] = 0 && islink(this[OBJ]) &&

27 FILE = this[OBJ] && PID = this[PID]; }

28 end open3;

29

30 trans open2(OPEN_RTC)

31 <- start;

32 -> after_open;

33 |_ { this[ERR] = 0 && this[EUID] = 0 && islink(this[OBJ]) &&

34 FILE = this[OBJ] && PID = this[PID]; }

35 end open2;

36

37 trans open4(OPEN_RW)

38 <- start;

39 -> after_open;

40 |_ { this[ERR] = 0 && this[EUID] = 0 && islink(this[OBJ]) &&

41 FILE = this[OBJ] && PID = this[PID]; }

42 end open4;

43

44 trans open6(OPEN_RWC)

45 <- start;

46 -> after_open;

163

47 |_ { this[ERR] = 0 && this[EUID] = 0 && islink(this[OBJ]) &&

48 FILE = this[OBJ] && PID = this[PID]; }

49 end open6;

50

51 trans open7(OPEN_RWT)

52 <- start;

53 -> after_open;

54 |_ { this[ERR] = 0 && this[EUID] = 0 && islink(this[OBJ]) &&

55 FILE = this[OBJ] && PID = this[PID]; }

56 end open7;

57

58 trans open8(OPEN_RWTC)

59 <- start;

60 -> after_open;

61 |_ { this[ERR] = 0 && this[EUID] = 0 && islink(this[OBJ]) &&

62 FILE = this[OBJ] && PID = this[PID]; }

63 end open8;

64

65 trans open9(OPEN_W)

66 <- start;

67 -> after_open;

68 |_ { this[ERR] = 0 && this[EUID] = 0 && islink(this[OBJ]) &&

69 FILE = this[OBJ] && PID = this[PID]; }

70 end open9;

71

72 trans open10(OPEN_WC)

73 <- start;

74 -> after_open;

75 |_ { this[ERR] = 0 && this[EUID] = 0 && islink(this[OBJ]) &&

76 FILE = this[OBJ] && PID = this[PID]; }

77 end open10;

78

79 trans open11(OPEN_WT)

80 <- start;

81 -> after_open;

82 |_ { this[ERR] = 0 && this[EUID] = 0 && islink(this[OBJ]) &&

83 FILE = this[OBJ] && PID = this[PID]; }

84 end open11;

85

86 trans open12(OPEN_WTC)

87 <- start;

88 -> after_open;

89 |_ { this[ERR] = 0 && this[EUID] = 0 && islink(this[OBJ]) &&

90 FILE = this[OBJ] && PID = this[PID]; }

91 end open12;

92

164

93 end Dont_Follow_Symlinks;

3. Executing a link to a setuid shell script through a link that appears to the shell

as an argument.

Basename is an external function de�ned in the application that returns the �le

part of a pathname.

1 extern str Basename(str);

2 pattern Shell_Script_Attack "ln setid_script -x; -x" priority 7

3 state start, after_exec;

4 int RUID;

5 str PROG;

6

7 post_action {

8 printf("User id %d has executed a wierd shell script(%s).\n",

9 RUID, PROG);

10 }

The signature monitors all successful (this[ERR] = 0) execs of a pathname

(PROG) whose name begins with a `-' (i.e. it matches the regular expression ^-.

This is the condition Basename(this[PROG]) =~ "^-".) and which is a link to

a shell script (the �rst two characters of the �le are #! and the �le is executable

by one of user, group or other).

11 trans exec(EXECVE)

12 <- start;

13 -> after_exec;

14 |_ {

15 this[ERR] = 0 && RUID = this[RUID] && PROG = this[PROG]

16 && islink(this[PROG]) && shell_script(this[PROG]) &&

17 (Basename(this[PROG]) =~ "^-");

18 }

19 end exec;

20 end Shell_Script_Attack;

VITA

165

VITA

Sandeep Kumar was born in India in 1963. He completed his Bachelor of Technology

in electrical engineering from the Indian Institute of Technology, New Delhi in 1985.

In the fall of 1985, he entered the University of Tennessee, Knoxville and received an

M.S. in computer science in 1987. Before attending Purdue in 1990, he worked as a

consultant in New Jersey. His research interests include computer security, intrusion

detection, operating systems, and networking.

