[7]

[12]

[13]

M. Kuhn. Sicherheitsanalyse eines Mikroprozes-
sors mit Busverschlisselunyg. Diploma the-
sis, Lehrstuhl fur Rechnerstrukturen, Universitat
Erlangen-Nurnberg, Erlangen, July, 1996.

Tim Polk. Automated tools for testing computer
system vulnerability. Technical Report NIST SP
800-6, National Institute of Standards and Tech-
nology, 1993.

Ronald L. Rivest, Adi Shamir, and David A.
Wagner. Time-lock puzzles and timed-release
crypto. Preprint, 9 pages.

F. Sayward and D. Baldwin. Heuristics for de-
termining equivalence of program mutations. Re-
search Report 161, Georgia Institute of Technol-
ogy, April, 1979.

Eugene H. Spafford. The pros and cons of disclo-
sure. In Conference on Systems Admunistration
and Network Security. USENIX, May, 1995. In-
vited address not in proceedings.

CIiff Stoll. Telling the goodguys: Disseminat-
ing information on security holes. In Proceedings
of the Fourth Aerospace Computer Security Con-
ference, pages 216-218, Washington, DC, 1988.
IEEE Computer Society.

Comerford White. ABYSS: A trusted architec-
ture for software protection. In Proc. 1987 IEEE
Symposium on Security and Priwvacy, QOakland,
California, pages 38-51. IEEE Computer Society
Press, April 27-29, 1987.



one segment.

7 Present practice

What do vendors currently do about patches? We
asked some, and here is a summary of their responses.
(All of the vendors who responded spoke with us only
on condition of anonymity.)

One vendor simply issues the patch and forgets
about it. If the patch fixes a security flaw, the patch
starts with a message like, “This patch fixes a security
flaw. Install it now or else the consequences are your
problem.” This vendor estimates that about half of
its customers actually install patches.

Another vendor built a prototype of an automatic
patch installation system similar to that described in
section 2.4. It was never put into use because a survey
of their customers found that they would have nothing
to do with 1t. This vendor uses the following system
to distribute patches: A service agent calls customers
who pay for patch service and tells them what patches
are available. Over the telephone, the customers se-
lect the patches they want, and the service agent sends
these patches to them by express mail. In addition, all
patches are posted on a web site from which any cus-
tomer can download whatever she wants. As with the
second vendor, security fixes carry a message, “Install
this soon or else 1t is your problem.”

8 Our recommendations

Based on our study to date, we recommend auto-
matic patch application provided users can be con-
vinced to accept it. It is effective and its costs are
moderate. If users will not accept it, then our second
choice is a combination of the techniques presented in
sections 2.2 and 2.3. The cost should be only slightly
more than the automated application method and it
would be nearly as effective. The enciphered OS ap-
proach may become feasible some day if vendors pro-
duce cryptoprocessors to prohibit program copying.

9 Future work

Many of the issues examined in this paper raise
more questions than we answer here.

How much of this paper applies to security tools,
too? Consider the issues raised in section 2.1, for ex-
ample. Could we customize a password checker to
make it work only on one machine? If an OS were cus-
tomized, would an audit tool have to be customized
in a compatible way? Some questions which arise in
that section are where in a compiler to use the random
numbers (intermediate code or final code generation),
what are the best ways to make random choices, and
how this may affect program efficiency? Eventually,
we might produce a compiler with this sort of GRNG
controlling its code generation. We discuss some of
this in other sections of the paper, but the issues are
not resolved.

These questions arise in section 2.2: Can we show
it is NP-hard to find a security fix in this collec-
tion of changes? Or can we think of any disassem-
bly tools that would facilitate discovery of the real
security fix? How good are disassemblers? Are zero-
knowledge proof techniques relevant here? Can one

use program mutation techniques [10] to generate the
false changes? Many mutants are equivalent and may
be used to generate pseudochanges. Are 100 changes
enough?

The automatic patch installer of section 2.4 is a
highly system-dependent mechanism. Some vendors
(e.g. SunSoft) offer already comfortable and semiauto-
matic patch installation systems. We could develop a
completely new state of the art automatic patch distri-
bution system for one specific environment, and doc-
ument its design concepts, the practical experiences,
and the unresolved problems in some papers. Alterna-
tively, we could try to improve existing semiautomatic
patch systems with additional functionalities towards
fully automated operation.

Here are some questions concerning Section 3.
What ciphers should be used? When the program is
swapped out, should 1ts data variables be enciphered?
How do we recover or repair system “crashes” or com-
ponent failures if we cannot recover the key? Can
we combine this mechanism with other cryptographic
needs on the system.

We hope to be able to answer some of these ques-
tions with our future research. In particular, we
would like to evaluate our approaches using a well-
documented security threat.

10 Acknowledgement

Portions of this work were supported by contract
F30602-96-1-0334 from Rome Laboratory (USAF), by
sponsors of the COAST Laboratory.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compil-
ers, Principles, Techniques, and Tools. Addison-
Wesley, Reading, Massachusetts, 1988.

[2] Robert M. Best. Preventing software piracy with
crypto-microprocessors. In Proc. IEEE Spring
COMPCON 80 San Francisco, California, pages
466-469, February 25-28, 1980.

[3] Chris Caldwell. The Dubner PC Cruncher—a mi-
crocomputer coprocessor card for doing integer
arithmetic. J. Recreational Mathematics, 25(1),
1993. This hardware is available from H & R
Dubner, 449 Beverly Road, Ridgewood, New Jer-
sey 07450.

[4] Donald E. Eastlake, Stephen D. Crocker, and
Jeffrey 1. Schiller. RFC-1750 Randomness Rec-
ommendations for Security. Network Working
Group, December 1994.

[5] Daniel Farmer and Eugene H. Spafford. The
COPS security checker system. In Proceedings
of the Summer 1990 Useniz Conference, pages
165-170, Berkeley, CA, June, 1990. Usenix As-

soclation.

[6] S. T. Kent. Protecting Fxternally Supplied Soft-
ware . Small Computers. Ph.d. thesis, Mas-
sachusetts Institute of Technology, Cambridge,
Massachusetts, March, 1981. MIT Laboratory for
Computer Science, MIT/LCS/TR~255.



Apart from the cost of the additional hardware, this
scheme requires some central authority to decide what
the encrypting and decrypting keys will be.

Why would users buy a cryptoprocessor — a ma-
chine that executes encrypted programs? One mar-
keting advantage is that software would be cheaper
for a cryptoprocessor because the vendor knows that
it can be used on only one machine. Copy protection
is enforced.

The ideal solution would somehow have to avoid
having anyone outside the software development team
get access to the plain text version of the software,
both the old unpatched and the new patched version.
That would certainly provide the highest level of se-
curity and would at the same time allow effective soft-
ware piracy prevention. Mechanisms that completely
prevent (even hardware) access to the executed soft-
ware include:

e Secure main board packages as implemented in
the ABYSS system [13]. The CPU, the RAM,
and some peripheral devices are all enclosed in a
tamper-proof package. Software is stored in en-
crypted form on a hard disk outside the security
shield or loaded in encrypted form over a network.
The (machine specific) decryption keys are stored
in a battery buffered RAM inside the secure pack-
age. The software is decrypted when 1t is loaded
from external storage into the RAM. The secure
package prevents hardware observation of the de-
crypted software in the system RAM or on the
system bus lines. The operating system kernel is
also loaded encrypted into the machine and can
therefore not be modified to release the protected
software.

e Cryptoprocessors perform the decryption be-
tween the memory interface of the CPU chip and
the on-chip cache. The security package is him-
ited to the CPU package, which simplifies man-
ufacture and servicing, and avoids memory ca-
pacity limitations. Cryptoprocessors have first
been described in [2] and existing implementa-
tions include the DS5002FP microcontroller and
the iPower security processor. Another important
reference for cryptoprocessors is [6]. A cryptopro-
cessor concept suitable for operation in a modern
multitasking workstation, in which it is not even
necessary to trust the operating system, is the
TrustNol processor concept described in [7].

Although cryptoprocessors provide in our opinion
the basis for the most secure patch distribution con-
cepts, they are at the moment more of academic inter-
est, because they are currently available on the civilian
market only for microcontroller applications and there
exists today no cryptoprocessor for personal computer
applications. Therefore, the cryptoprocessor concept
should be considered as an ideal solution and should be
documented as a reference for systematic comparison
with other patch distribution concepts, but consider-
ing the lack of existing hardware, these concepts are
probably not what we should recommend in the near

future. We could of course consider developing such a
chip based on an existing microprocessor design.

6 The costs

It is not easy to modify a compiler to make it use
a GRNG to determine code arrangement, register as-
signments, etc. Thus, the methods described in sec-
tion 2.1, Customization, and section 2.2, Obfuscation,
have a high cost in tool development. Customization
has the additional cost of compiling the program once
for each customer, each compilation using a different
seed for the GRNG. If there are tens of thousands
of customers and hundreds of thousands of lines of
code to be compiled, this cost will preclude the use
of customization. Customization could be made feasi-
ble by customizing the OS only for a special class of
customers who pay for this service. The vendor would
compile the patch once for each special customer (each
time with a unique GRNG seed) and once more for all
regular customers together (using one more GRNG
seed). In contrast, obfuscation requires that the OS
be compiled only once per release. One vendor (HP)
maintains a database of customer options that might
serve as a model for the record keeping needed for
customization.

A major cost of synchronized patch installation, as
described in section 2.3, is the creation of the patch
distribution hierarchy. Of course, patches are already
distributed now. Perhaps a slight modification of the
present system would suffice. If cryptography is to
be used, then an appropriate cryptosystem must be
chosen and implemented; the political and key man-
agement issues likely make this solution unworkable at
present, especially for a global customer base. Like-
wise, time locks would add to the cost if they were
used.

One cost of automatic patch application, as de-
scribed in section 2.4, is the development of the OS
module that applies patches and the authentication
system it uses. Another cost is again the creation of
a patch distribution hierarchy. The installation mod-
ule must know which features of the OS were selected
when the OS was created so that it will not try to
patch a non-existent module. It must also know which
version of the OS is currently running. Customers
should be able to undo a patch that they do not want.
The people we have asked about this approach over-
whelmingly said they did not want automatic patch
application on their systems, either because of secu-
rity risk or because the high frequency of modification
hinders isolation of fault causes.

The cost of the hardware solutions are the special
hardware, firmware or software to decipher instruc-
tions and/or protect main memory from direct user
access. This includes the cost of tamperproof pack-
aging. There are also the costs of the cipher, of key
management, and of enciphering many copies of the
OS. The latter cost may be as prohibitive as that of
compiling many copies of the OS as in section 2.1.
What if a customer bought many systems? Would
they have different keys or the same key? An addi-
tional cost of the method described in section 3.2 is
the redesign of the OS to put all security functions in



4.2 Change of control flow

We can alter the thread of execution in a program
without changing its functional behavior by altering
the order of execution of some of the independent ba-
sic blocks, thus altering the look of the binary exe-
cutable. In the global data flow analysis phase during
compilation of a program, we can generate a depen-
dence graph between basic blocks. Any ordering of
the basic block execution sequence produced by the
topological sort of the dependence graph will be func-
tionally correct.

During patch application, we can opt for an alter-
native execution sequence (as produced by a topolog-
ical sort) for some of the basic blocks through jumps,
thereby altering the binary executable. One must de-
velop an algorithm to analyze the effect of the mod-
ified execution sequence on the register contents and
to change the executable code accordingly.

4.3 Register and variable renaming

We can rename all the data registers used in the
program. Interchanging some variable addresses con-
sistently will also change the appearance of the pro-
gram. Usually security patches change only a few lines
of code. Sometimes only the type of a variable is
corrected, one line of code 1s added or removed, or
a branch condition is slightly modified. Because the
same compiler and the same compile options are usu-
ally used to create both the old and new executable
binary, we will observe only a few bytes of changed
machine code. The code produced by compilers allows
easy recognition of subroutine boundaries. Therefore,
even if part of the machine code has been relocated
and many absolute addresses in the code have been
changed, simple length comparisons and searches for
the longest common subsequence will quickly identify
those subroutines that have been modified. This al-
lows the attacker to concentrate her reverse engineer-
ing efforts onto a few subroutines, which can save a
lot of time.

We suggest therefore the development of the fol-
lowing mechanism. Take the code generation module
of an existing compiler and add algorithms that allow
many variations in the machine code produced. The
code generator and optimizer of a compiler often make
an arbitrary selection among many different machine
instruction sequences that all fulfill the same purpose
and that are comparable in memory and runtime effi-
ciency. If these alternative machine sequences can be
identified by the code generator, the selection of the
machine code sequence actually used can be deter-
mined by a random number generator (GRNG). This
way, by providing a new seed value for the GRNG as
a compiler option, we can cause the compiler to gen-
erate a new executable binary, which shows in most
bytes significant differences from any executable gen-
erated previously from the same or any similar source
code.

The following mechanisms can (among others) be
used to vary the output of machine code:

e Memory locations of variables can be permuted.

e Sequential instructions can be permuted, as long
as this will not alter the program semantics. The
optimizer keeps a great deal of data about how
instructions depend on each other, therefore this
should not be difficult to figure out.

e The order of procedures in the final code can be
permuted.

e Code segments that are not marked as being in
some time-critical inner loop can be generated
using suboptimal but semantically identical ma-
chine sequences.

e The memory layout of code can also be reorga-
nized by inserting many jump commands.

e Simple boolean expressions can be replaced by
more complicated equivalent expressions. If the
attacker tries to develop automatic software that
1s supposed to reverse this artificial complication,
she might quickly face a number of NP-complete
problems.

The compiler should support a “critical” directive
to signal especially time-critical parts of the source
code to exclude them from suboptimal modifications.
For the rest of the software, it is perfectly acceptable if
the pseudo-random variations in the code generation
process cause the code produced to take some more
time and memory than with the normal optimization
techniques.

If the GRNG seed value is changed for every dis-
tributed software version, the attacker will find that
reverse engineering only the differences between the
old and new versions is at least as difficult as reverse
engineering the old software version alone and search-
ing in 1t for security problems. This way, the goal of
secure patch distribution will have been accomplished
nicely for binary files.

5 Hardware-supported decryption:

cryptoprocessors

With special hardware capable of decoding an en-
crypted instruction before feeding it to the CPU, we
may be able to apply an encrypted patch directly to
the binary executable. This would prevent a user from
seeing the decrypted version of the patch.

A patch will be encrypted and be applied to the bi-
nary executable in the encrypted form. CPU control
logic recognizes an encrypted instruction by a special
marker on the segment. In the instruction decoding
phase of the execution cycle for an encrypted instruc-
tion, the routine instruction decoding will be preceded
by a decrypting step in which the encrypted instruc-
tion will be decoded by a hardwared decoding unit
with an embedded decryption key.

To avoid having a longer clock cycle time because
of the decrypting phase, we may prefetch some of the
encrypted instructions and pipeline them through the
decryption unit. To keep the decryption pipelining
scheme simple, we may leave the branch instructions
in the patch unencrypted in the first place.



2.4 Automatic Patch Application

Part of the OS automatically installs properly au-
thenticated patches that it receives from the vendor
over the network. Of course, the patch message au-
thentication would have to be of the highest quality
and the user would have to trust the vendor. The part
of the OS that installs patches would replace some of
the OS binary files. If necessary, it would then reboot
the system. One problem is that different systems are
configured differently, and one might have to consider
this when installing certain patches and either not ap-
ply them or apply them differently on different sys-
tems. The user might not even know that his OS had
been patched unless he received mail about it or he
monitored the last modification time of the OS binary
files. Special arrangement would have to be made to
patch machines not connected to Internet.

Some users would worry about having an OS fea-
ture that allows arbitrary modification of their OS
upon receipt of a special message from another com-
puter. Many users might not care. Someone (the man-
ager or the automatic patch applicator) should save
a copy of the old unpatched OS binary file in case
the patch breaks something and the new OS does not
work. However, this copy would need to be saved lo-
cally — the patched version may not run so we must
allow the remote patcher to revert the old OS.

This is the only patch application technique that
can help sites whose managers are inconsistent about
installing patches, or where issues of scale are signifi-
cant. System administrators are often overloaded with
more important work, or ignorant of security issues,
or both. Patches must of course only be installed if
they have been authorized by some highly trustworthy
entity, and if automatic tests before the patch instal-
lation have shown that the patch is unlikely to cause
any troubles. After the patch has been performed, a
number of automated tests of the fixed functionality
should be performed and the patch should be undone
automatically if these tests fail.

3 Hardware solutions

The following solutions require all user computers
to have special hardware or firmware not found on
conventional machines. Specifically, some or all of the
instructions of the OS would be enciphered—not sim-
ply encoded—and the special hardware or microcode
would decipher some or all instructions either when
they are fetched from main memory or when they are
loaded from disk. In the latter case, main memory
would have to be protected from the users view. For
example, the user could not get a core dump. By
having some the code enciphered, comparisons and
analysis of changes becomes much more difficult or
impossible within any limited time period. Software
protection is not sufficient. The hardware must be
physically protected, for example, from a malicious
user attaching a logic analyzer to a bus.

3.1 Enciphered Operating System

All OS binary files are enciphered by the vendor.
A block cipher would be best in this application, to
provide random access to the enciphered instructions.

Users receive only the enciphered binary files. To run
the OS, either (a) the enciphered OS is loaded into
main memory and the microcode or hardware deci-
phers each instruction as it is fetched or (b) the entire
OS is deciphered when it is loaded into main mem-
ory and user access to it is denied by locating both
RAM and processor in a tamper resistant module.
The patch is enciphered with the same key as the OS
so that it may replace the proper OS binary files. En-
ciphering makes the patch unintelligible so that its in-
stallation need not be synchronized. The cipher must
be simple so that performance will not be degraded.
The block size must be large enough (e.g., > 128 bits)
to prevent cryptanalysis with a logic analyzer. The
key might be the same for every machine or each ma-
chine might have its own key. The latter choice com-
plicates patch distribution but provides excellent copy
protection for the OS as well as for application pro-
grams that use the same mechanism. The CPU would
fetch instructions either directly from memory or from
memory through decoding hardware. A multiplexor
chooses the source of the instruction.

3.2 Certain Modules Enciphered

A small number of OS instructions, such as a se-
curity module or part of a patch that would reveal a
security hole, are enciphered. To execute programs
efficiently, the enciphered instructions are placed in
one segment and a segment flag tells whether its in-
structions are enciphered or not. Seeing this flag, the
instruction decoder would decipher instructions from
this segment before executing them. Since only rarely
would instructions have to be deciphered, a more se-
cure (and probably slower) cipher could be used than
if all instructions were enciphered as in section 3.1.

4 Methods of Customization and Ob-

fuscation of Binary Files

In this model, which we summarized in sections
2.1 and 2.2, the vendor carries out certain code rear-
rangement and/or modifications so that the resulting
binary executable looks quite different from the un-
patched version, while remaining functionally equiva-
lent except for the patch. Here are some of the ways
in which these rearrangements or modifications may
be performed:

4.1 Intra-block code rearrangement

There is normally more than one way in which
we can order the independent computations inside
a basic block so that the resulting object code has
the optimum cost in terms of instruction counts and
load/stores. Such orderings are normally obtained
from topological sorts of the dependence graph for a
block. Aho, Sethi and Ullman [1] present an algo-
rithm to generate optimal orderings for evaluating the
nodes of a DAG representing the basic block. When
applying a patch, we can reorder the computations in
some of the basic blocks so that the affected blocks are
still optimal, but look very different from the original
blocks, especially since the instruction level optimiza-
tion will often select very different instructions after
some reordering.



find thousands (or more) of differences and thus have
great difficulty discovering the security flaw. This way,
reverse engineering the patch becomes almost as diffi-
cult as reverse engineering the entire original vulner-
able version.

In a slight variation of this idea, the changes are
drawn from a database of harmless variations of the
compiled code constructed when the OS was compiled.
Almost all of these modifications are composed of se-
mantically equivalent changes of register assignment
or order of execution of commutative operations (e.g.,
b+a instead of a+b). Only a few, and possible no,
changes in a set repair a real security problem. The
malicious user examining the set of changes would
have to expend considerable effort each month to find
a security fix, and some months she would find noth-
ing.

2.3 Synchronized patch installation

We assume that all the computers are on networks
and each network 1s connected to some site which in
turn is connected to a common network (e.g., a dedi-
cated private network, or the Internet). A site is under
a single administrative control and may contain mul-
tiple networks. In one variation, each site has a secu-
rity class as well. Higher security classes are assigned
to sites with greater need for protection and smaller
chance of having malicious users. Every site has a
locally-trusted machine designated as the local patch
distributor through which encrypted patches and keys
are distributed to the local computers.

On the next higher level in the distribution hierar-
chy, there is a set of machines designated as regional
distributors, each of which connects logically to the set
of local distributors. The regional distributors, along
with a root distributor, may be maintained by a ven-
dor, a cartel of vendors, or some independent body
serving the industry.?

When a new patch is issued, the root distributor
produces several encrypted versions of it using differ-
ent keys—one key for each security class—and sends
the encrypted patches and keys signed to all the re-
gional distributors. Regional distributors then send
the appropriate version of the encrypted patches to
all local distributors under their respective domains,
and the local distributors forward it to all machines
within their respective sites. Having distributed the
encrypted patch, the regional distributors coordinate
among themselves to ensure that all sites with high
security class have received the patch. Then the re-
gional distributors give out the keys to the local dis-
tributors in successive waves—sites with the highest
security class receive their keys first and those with
the lowest security class receive it last. The regional
distributors may again coordinate among themselves
to ensure that all higher security sites have received
the keys before distributing keys to the lower security
sites.

The above scheme does not work for a machine
that is either switched off or temporarily disconnected

2We should note that this loosely corresponds to the current
logical organization of FIRST, the Forum of Incident Response
and Security Teams.

from the network when the patch and the key are dis-
tributed. To correct the situation, when this machine
boots up or reconnects back to network and before it
executes any other process, it contacts the local dis-
tributor and receives any patch that might have been
issued during the intervening period.

In a variation of this approach the patch is en-
ciphered and sent to all sites or made available by
ftp from the vendor. With it are included (in plain
text) instructions to install it at noon Universal Time
(GMT) on a certain day, at which time the key to the
cipher will be revealed. Cliff Stoll first described this
scenario [12] and suggested that one good way to re-
veal the key would be to publish 1t in a national news-
paper such as USA Today or the New York Times. To-
day the WWW might be a more appropriate medium
due to its world wide coverage. One might use some
form of time locks (first suggested in [11] and indepen-
dently developed in [9]) to reveal the key (or keys) at
the same time in different places.

One approach to time locks is to have each time
lock server solve an inherently sequential “time lock
puzzle” which requires a precise amount of comput-
ing to solve, and whose solution is the key. This sort
of time lock puzzle probably would not be suitable
because some computers are much faster than others
and a close approximation to synchrony is important
in patch distribution. For example, one might be a
personal computer and another a Cruncher [3], which
can solve “time lock puzzles” requiring arithmetic with
large integers hundreds of times faster than a PC could
solve it. In addition, the “time lock puzzle” must be
distributed synchronously, which is the same as the
original problem of distributing the patch keys.

Another approach to time locks is to use trusted
agents. These are tamper proof computers that pub-
lish previously secret values periodically. These agents
can synchronize their internal clocks by a crypto-
graphic transaction once every few days. Besides re-
vealing secret values periodically, these agents also re-
spond to requests of the form, “Here are values for
M and t. Please return E(K, M), the encryption of
message M under the secret value K which you will
reveal at future time ¢.” To use a time lock agent
to distribute a patch, the vendor would make such a
request to each time lock agent with M = the key
for the patch. Then the vendor would send the mes-
sage (agent_id,t, E(K, M)) to each site served by that
agent. At time ¢, the site would get K from its time
lock agent, use this to decipher E(K, M), then use M
to decipher the patch, and finally install the patch.

A variation of these trusted agents would be for a
standard time service such as WWV, DCF77 or NTP
to broadcast a signed time stamp periodically, say,
once per hour. The trusted agent is a smart card
which contains the public key of the time service and
the patch key. It reveals the patch key as soon as
it receives the signed time stamp for a certain hour
(or a later hour). The smart card has a session key
known only to it and the vendor, and this key is used
to load the patch key into the smart card, along with
the release hour.



one with which most people are familiar, and presents
sufficient complexity and risk to warrant concern. In
addition, we discuss how some of our solutions may
be applied to a closely-related problem: that of pro-
tecting security tools developed or employed locally
to each site. Each tool set contains an implicit list of
vulnerabilities—especially if customized for local con-
ditions and concerns—that may be exploited if the
tools are obtained by another and analyzed. In fact,
as noted in [8] and [5], the tools may be modified
and then used as automated attack mechanisms. This
represents a different aspect of the general problem:
one where distribution may also occur to unauthorized
parties of unknown number, and where the window of
vulnerability may be arbitrarily large.

1.2 Summary of possible solutions

This paper investigates how patch distribution and
security tool distribution can be made safer. We ex-
plore methods of protecting this information during
distribution and employment, and discuss the limita-
tions of any such protection. Although we suspect
that it may be impossible to guarantee the complete
safety of distributed vulnerability-related information,
we demonstrate that there may be effective means of
reducing the risk associated with such distributions.

The crux of the patch distribution problem is this:
how are we to distribute the solution of a problem
without betraying any information about the prob-
lem? This is difficult because the solution of a problem
by its nature contains clues about the problem. Thus,
it may well be that the patch distribution problem we
consider cannot be solved in its entirety. Therefore,
we must also consider ways to reduce the associated
risk.

In the following sections, we consider these methods
of reducing the risks accompanying security-relevant
patch distribution:

e We can “customize” each patch or tool so that
each one differs from machine to machine.

o We can introduce “noise” to mask changes.

e We can synchronize patch distribution and ap-
plication so that all users receive and install the
patch at the same time.

e We can use automated patching: Part of the op-
erating system patches itself when it receives an
authenticated command over the network from
the vendor.

e Use cryptographic methods to obscure patches.

In what follows, we classify solutions as either soft-
ware or hardware solutions. The software solutions
are expected to run on standard computer hardware.
The hardware solutions require each computer to have
special hardware or firmware.

2 Software solutions

These solutions will run on ordinary computers ex-
cept that the vendor’s computer may require a good
random number generator that might involve some
special hardware (cf. [4]). Also, one of the solutions
in section 2.3 uses time locks, which might use special
hardware to solve a puzzle. But this requires only the
machines used in the solution, and no user machines,
to have special hardware.

2.1 Customization

Each site or machine has its own unique Operating
System (OS) binary code. The vendor’s compiler uses
a Good Random Number Generator (GRNG) to de-
termine code arrangement, register assignment, vari-
able assignment, etc.! The vendor saves the sequence
from the GRNG used for each site so that it can pre-
pare a patch that applies only to that one particular
site. The patch is compiled using the same random
numbers as the module 1t fixes.

As different sites have slightly different OS’s, they
might have different forms of a flaw and require dif-
ferent patches. Thus, if a malicious user looks at the
patch or compares the old and new binaries to learn
what problem the patch fixes, then she might not be
able to use this knowledge to break into any other sys-
tems because perhaps only her system had that form
of the bug. For example, if the flaw were a buffer
overflow, then different versions of the OS might have
different offsets from the buffer to a variable or stack
return address to overwrite. However, some OS bugs
(design errors) may have such general nature that they
apply to all (or many) versions of the OS regardless of
the use of the GRNG when it was compiled. Then a
malicious user could harm systems that installed the
patch later. These random variations in code for a
given program are used also in section 2.2 Obfusca-
tion below.

2.2 Obfuscation

The patch is disguised, but not enciphered, to hin-
der, but not completely prevent, reverse engineering.

As in section 2.1, Customization, the vendor’s com-
piler uses a GRNG to determine code arrangement,
make register assignments, and other changes. How-
ever, now the patch i1s compiled using new random
numbers. The GRNG could also be used to intro-
duce unnecessarily complex expressions by expand-
ing the parse tree in those portions of the OS that
are not time-critical. These changes would make the
code much more difficult for the attacker to analyze,
or possibly render the code impossible to understand.
Indeed, optimization itself may provide sufficient ob-
fuscation of the program. In contrast to section 2.1,
now each site has the same version of the OS gener-
ated by the same sequence from the GRNG. When
the vendor fixes the flaw, he recompiles the OS us-
ing a new sequence from the GRNG. The malicious
user who compares the old and new binary files will

1A pseudo-random number generator is not appropriate, as
discovery of the generator may allow an attacker to reproduce
the sequence of perturbations in the compilation. This comment
applies to the other schemes were we describe use of a GRNG.



Low-Threat Security Patches and Tools

Mohd A. Bashar? Ganesh Krishnan, Markus G. Kuhn,
Eugene H. Spafford, S. S. Wagstaff, Jr.

COAST Laboratory

Department of Computer Sciences
Purdue University
1398 Department of Computer Sciences
West Lafayette, IN 47907-1398

{krishg,kuhn,spaf,ssw}0cs.purdue.edu

Abstract

We consider the problem of distributing potentially
dangerous information to a number of competing par-
ties. As a prime example, we focus on the issue of dis-
tributing security patches to software. These patches
implicitly contain vulnerability information that may
be abused to jeopardize the security of other systems.
When a vendor supplies a binary program patch, dif-
ferent users may receive it at different times. The dif-
ferential application times of the patch create a window
of vulnerability until all users have installed the patch.
An abuser might analyze the binary patch before oth-
ers install it. Armed with this information, he might
be able to abuse another user’s machine.

A related situation occurs in the deployment of se-
curity tools. However, many tools will necessarily en-
code vulnerability information or explicit information
about security “localisms.” This information may be
reverse-engineered and used against systems.

We discuss several ways in which security patches
and tools may be made safer. Among these are: cus-
tomizing patches to apply to only one machine, dis-
guising patches to hinder their interpretation, synchro-
nizing patch distribution to shrink the window of vul-
nerability, applying patches automatically, and using
cryptoprocessors with enciphered operating systems.
We conclude with some observations on the utility and
effectiveness of these methods.

1 Introduction
1.1 The general problem

Suppose Zelda wishes to distribute sensitive infor-
mation to Alice and Bob. There are several potential
problems in the process that we know how to man-
age: preventing others from reading the information,
preventing others from altering the information, and
marking the information in such a way that Alice and
Bob know who sent it. We know how to scale these so-
lutions affordably for many situations. We also know
how to configure the solutions to handle cases where

*Current address: Alamadanga Kushtia, Bangladesh.

Zelda sends frequent messages to different, but not
necessarily disjoint, sets of users; e.g., message 1 to
Alice, Bob and Carol; message 2 to Alice; and mes-
sage 3 to Bob, Carol and David.

We have identified a class of situations to which
there are as yet no formalized solutions. These sit-
uations occur when Zelda distributes information to
Alice, Bob and others who may be potential rivals.
The information offers each of them a competitive ad-
vantage if they receive and act on the information be-
fore one of the others. Examples include distribut-
ing financial market information to investors, and pro-
viding bidding specifications to potential contractors.
Part of this problem is determining how to distribute
and protect the information in such a way as to re-
duce or eliminate the time during which the difference
in knowledge may be exploited. Another major part
of the problem is how to scale any solution to large
numbers of receivers, and how to accomplish this in-
expensively.

Of particular interest to us are the cases of dis-
tributing security-relevant updates and patches to
software. When a vendor distributes a security-related
patch to customers, it contains implicit information
about the vulnerability involved, and perhaps of the
exploit 1tself. The patch must be sent to customers
and users if the vulnerability 1s known to others. How-
ever, the nature of patch distribution 1s such that
many users may not receive (or use) patch informa-
tion at the same time as others. There are global
differences in time zones, work weeks, holidays, work-
loads, and competence. During the time between the
first receipt of the patch, and the application of that
patch to the last remaining machine needing it may be
a large window of vulnerability. Our concern is how
to reduce this vulnerability, raise the cost of exploit-
ing it, and otherwise make the process safer for all the
recipients.

The remainder of this paper discusses aspects of
the general set of problems in the context of vendor
patch distribution. Although this does not have all
the characteristics present in the general problem, it is



