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Abstract

Authorship analysis on computer software is a difficult
problem. In this paper we explore the classification of
programmer’s style, and try to find a set of characteris-
tics that remain constant for a significant portion of the
programs that this programmer might produce.

Our goal is to show that it is possible to identify the
author of a program by examining its programming style
characteristics. Ultimately, we would like to find a signa-
ture for each individual programmer so that at any given
point in time we could identify the author of any program.

The results of this paper support the conclusion that
within a closed environment, and for a specific set of pro-
grammers, it is possible to identify a particular program-
mer and the probability of finding two programmers that
share exactly those same characteristics should be small.

1 Introduction

There are many occasions in which we would like to iden-
tify the source of some piece of software. For example,
if after an attack to a system by some software we are
presented with a piece of it, we might want to identify
its source. Typical examples of such software are Trojan
horses, viruses, and logic bombs1.

�Contact person for questions concerning the paper.
1[GS92] defines trojan horses as programs that appear to have one

function but actually perform another function; viruses as programs that
modify other programs in a computer, inserting copies of themselves;
and logic bombs as hidden features in programs that go off after certain
conditions are met.

Other typical circumstances will require that we trace
the source of a program. Proof of code re-engineering,
resolution of authorship disputes and proof of authorship
in courts are but a few of the more typical examples of such
circumstances. Often, tracing the origins of the source
requires that we identify the author of the program.

Given that software evolves over time, that program-
mers vary their programming habits and their choice of
programming languages, and that software gets reused, it
seems unlikely that, given a piece of software, we will
identify the programmer who wrote it out of the millions
of programmers who develop software.

However, the identification process in computer soft-
ware can be made reliable for a subset of the programmers
and programs.

2 Statement of the Problem.

Authorship analysis in literature has been widely debated
for hundreds of years, and a large body of knowledge has
been developed [Dau90]. Authorship analysis on com-
puter software, however, is different and more difficult
than in literature.

Several reasons make this problem difficult. Author-
ship analysis in computer software does not use the same
stylistic characteristics as authorship analysis in literature.
Furthermore, people reuse code, programs are developed
by teams of programmers, and programs can be altered by
code formatters and pretty printers.

Our objective is to classify the programmer and to try
to find a set of characteristics that remain constant for a



significant portion of the programs that this programmer
might produce. This is analogous to attempting to find
characteristics in humans that can be used later to identify
a specific person.

Eye and hair coloring, height, weight, name and voice
pattern are but a few of the characteristics that we use on
a day-to-day basis to identify persons. It is, of course,
possible to alter our appearance to match that of another
person. Hence, more elaborate identification techniques
like fingerprinting, retinal scans and DNA prints are also
available, but the cost of gathering and processing this
information in large quantities is prohibitively expensive.
Similarly, we would like to find the set of characteristics
within a program that will be helpful in the identification
of a corresponding programmer, and whose computation
can be automated with a reasonable cost.

What makes us believe that identification of authorship
in computer software is possible? People work within
certain repeated frameworks. They use those things that
they are more comfortable with or are accustomed to.
Humans are creatures of habit, and habits tend to persist.
That is why, for example, we have a handwriting style that
is consistent during periods of our life, although the style
may vary as we grow older.

Likewise for programming, we can ask: which are the
programming constructs that a programmer uses all the
time? These are the habits that will be more likely en-
trenched, the things he consistently and constantly does
and that are likely to become ingrained.

3 Motivation.

Spafford and Weeber suggested that it might be feasible
to analyze the remnants of software, typically the remains
of a virus or trojan horse, and identify its author. They
theorized that this technique, called Software Forensics,
could be used to examine and analyze software in any
form; be it source code for any language or executable
images [WS93].

Among the measurements that Spafford and Weeber
suggest are the preference for certain data structures and
algorithms, the compiler used, the level of expertise of the
author of a program, the choice of system calls made by the
programmer, the formatting of the code, the use of pragmas
or macros that might not be available on every system,
the commenting style used by the programmer, variable
naming convention used, and misspelling of words inside
comments and variables. However, Spafford and Weeber

provided no statistical evidence that might support their
theory.

The work presented on this paper is precisely an attempt
at determining the validity of their assumptions. If proven
right, four basic areas can benefit from the development
of authorship analysis techniques: 1) For authorship dis-
putes, the legal community is in need of methodologies
that can be used to provide empirical evidence to show
that two or more programs are written by the same person.
2) In the academic community, it is considered unethical to
copy programming assignments. While plagiarism detec-
tion can show that two programs are equivalent, authorship
analysis can be used to show that some code fragment was
indeed written by the person who claims authorship of it.
3) In industry, where there are large software products that
typically run for years, and contain millions of lines of
code, it is a common occurrence that authorship informa-
tion about programs or program fragments is nonexistent,
inaccurate or misleading. Whenever a particular program
module or program needs to be rewritten, the author may
need to be located. It would be convenient to be able
to determine the name of the programmer who wrote a
particular piece of code from a set of several hundred pro-
grammers so he can be located to assist in the upgrade
process. 4) Real-time intrusion detection systems could
be enhanced to include authorship information2 [Krs94]

4 Survey of Related Work

In literature, the question of Shakespeare’s identity has
engaged the wits and energy of a wide range of people for
more than two hundred years. Such great figures as Mark
Twain, Irving Wall and Sigmund Freud debated at length
this particular issue [HH92].

Hundreds of books and essays have been written on this
topic, some as early as 1837 [Dis37]. Especially interest-
ing was W. Elliott’s attempt to resolve the authorship of
Shakespeare’s work with a computer by examining literary
minutiae from word frequency to punctuation and procliv-
ity to use clauses and compounds[EV91]. Although much
controversy surrounds the specific results obtained by El-
liott’s computer analysis, it is clear from the results that
works attributed to Shakespeare fit a narrow and distinc-
tive profile[Krs94].

The issue of identifying program authorship was ex-

2A programmer signature constructed from the identifying character-
istics of programs constitutes a pattern that can be used in the monitoring
of abnormal system ussage.



plored by Cook and Oman [OC89] as a means for deter-
mining instances of software theft and plagiarism3. They
briefly explored the use of software complexity metrics
to define a relationship between programs and program-
mers, concluding that these are inadequate measures of
stylistic factors and domain attributes. Two other studies
by Berghel and Sallach [BS84] and Evangelist [Eva84]
support this theory.

Cook and Oman explain the use of “markers” to describe
the occurrences of certain peculiar characteristics, much
like the markers used to resolve authorship disputes of
written works. The markers used in their work are based
purely on typographic characteristics.

For collecting data to support their claim, they built
a Pascal source code analyzer that generated an array of
Boolean measurements based on commenting style, inden-
tation, lower case characters only, upper case characters
only, multiple statements per line, blank lines in program
body, whether case was used to distinguish between key-
words and identifiers, whether underscores were used in
identifiers, whether the BEGIN keyword was followed
by a statement on the same line, and whether the THEN
keyword was followed by a statement on the same line

To test their hypothesis, Cook and Oman collected the
metrics mentioned above for eighteen short programs by
six authors. The programs were taken from example code
for three tree-traversal algorithms and one simple sorting
algorithm.

Cook and Oman claim that the results of the experiment
were surprisingly accurate. The results are encouraging,
but further reflection shows that the experiment is funda-
mentally flawed. It fails to consider that textbook algo-
rithms are frequently cleaned by code beautifiers and pretty
printers, and that different problem domains will demand
different programming methodologies. The implementa-
tion of the three tree-traversal algorithms involves only
slight modifications and hence are likely to be similar.

Spafford and Weeber suggested that it might be feasible
to analyze the remnants of software, typically the remains
of a virus or trojan horse, and identify its author. This
technique, called Software Forensics, could be used to ex-
amine and analyze software in any form; be it source code
for any language or executable images [WS93]. Soft-

3It is important to realize that authorship analysis is markedly dif-
ferent from Plagiarism Detection. Plagiarism detection can not tell if
two entirely different programs were written by the same person. Also,
the replication need not maintain the programming style of the original
software. Many people have devoted time and resources to the devel-
opment of plagiarism detection [Ott77, Gri81, Jan88, Wha86], and a
comprehensive analysis of their work is beyond the scope of this paper.

ware Forensics is really a superset of authorship analysis
using style analysis because some of the measurements
suggested by Spafford and Weeber include, but are not
limited to, some of the measurements made by Cook and
Oman. The list of measurements suggested by Spafford
and Weeber is comprehensive, but the derivation of some
of these are difficult to automate[Krs94].

5 Difficulties in Authorship Analysis

We expect the programming characteristics of program-
mers to change and evolve. Education is only one of many
factors that have an effect on the evolution of program-
ming styles. Not only do software engineering models
impose particular naming conventions, parameter pass-
ing methods and commenting styles; they also impose a
planning and development strategy. The waterfall model
[GJM91], for example, encourages the design of precise
specifications, utilization of program modules and exten-
sive module testing. These have a marked impact on
programming style.

The programming style of any given programmer varies
also from language to language, or because of external
constraints placed by managers or tools4. Out of the set
of measurements that allow our model to identify the au-
thorship of a program, can we identify those that have
been contaminated and ignore them for our analysis? A
good example would be the analysis of code that has been
formatted using a pretty-printer. Would it be possible for
the authorship analysis system to recognize that such a
formatter has been used, identify the pretty-printer and
compensate by eliminating information about indentation,
curly bracket placement and comment placement? Con-
ceptually similar would be the recognition of tools used
that force onto the programmer a particular programming
style. For example, could the authorship analysis tool
recognize the usage of Motif and compensate for variable
naming conventions imposed by the tool?

Finally, among the most serious problems that must be
resolved with authorship analysis is the reuse of code. All
the work performed up to date on this subject assumes
that a significant part of the code being analyzed was
built and developed by a single individual. In commercial
development projects, this is seldomly the case.

4The use of the Motif, GL, PLOT-10 or GKS libraries generally
demands that the application be structured in some fashion or may impose
naming conventions.



6 Experimental Setup

The term “Software Metric” was defined by Conte, Dun-
smore and Shen in [SCS86] as: “Software metrics are used
to characterize the essential features for software quan-
titatively, so that classification, comparison, and mathe-
matical analysis can be applied.” What we are trying to
measure, for establishing the authorship of a program, is
precisely some of these features. Hence, the term software
metric, or simply metric, is appropriate to describe these
special characteristics.

Although theoretically possible, it would be impracti-
cal to compare style metrics across different development
platforms. Among similar languages like C, Modula and
Pascal, the same metrics might be used successfully with
similar results. This might not be true if C is compared
with Prolog or LISP. These programs belong to three dif-
ferent programming paradigms (Structured Programming,
Logic Programming and Functional Programming) and
there are large differences among them. Many of the met-
rics we could use for identifying authorship in one of these
programming languages will be of no use in the others.

Hence, in this paper we will limit ourselves to the stylis-
tic concerns of C source code. Programmers are comfort-
able using it and the language is commonly used in the
academic community and in industry.

7 Sources for the Collection of Met-
rics

We can collect metrics for authorship detection from a
wide variety of sources:

� Oman and Cook [OC91] collected a list of 236 style
rules that can be used as a base for extracting metrics
dealing with programming style.

� Conte, Dunsmore and Shen [SCS86] give a compre-
hensive list of software complexity metrics.

� Kernighan and Plauger [KP78] give over seventy pro-
gramming rules that should be part of “good” pro-
gramming practice.

� Van Tassel [Tas78] devotes a chapter to programming
style for improving the readability of programs.

� Jay Ranade and Alan Nash [RN93] give more than
three hundred pages of style rules specifically for the
“C” programming language.

� Henry Ledgard gives a comprehensive list of “C” pro-
gramming proverbs that contribute to programming

excellence [Led87].

Many other sources have influenced our choice of met-
rics [LC90, BB89, OC90b, Coo87] but do not contain a
specific set of rules, metrics or proverbs.

All these sources give us ample material to select the
metrics we will use. Because of the large number of
rules and metrics available, we have decided to divide our
metrics into three categories.

We would like to examine those metrics that deal specif-
ically with the layout of the program. In this category we
will include such metrics as the ones that measure indenta-
tion, placement of comments, placement of brackets, etc.
We will call these metrics “Programming Layout” metrics.

All these metrics are fragile because the information
required can be easily changed using code formatters and
pretty printers. Also, the choice of editor can significantly
change some of the metrics of this type. Emacs, for exam-
ple, encourages consistent indentation and curly bracket
placement. Furthermore, many programmers learn their
first programming language in university courses that im-
pose a rigid and specific set of style rules regarding inden-
tations, placement of comments and the like [MB93].

Also useful are the metrics that deal with characteristics
that are difficult to change automatically by pretty printers
and code formatters, and are also related to the layout of
the code. In this category we include those metrics that
measure mean variable length, mean comment length, etc.
We will call these metrics “Programming Style” metrics.

Finally, we would like to examine metrics that we hy-
pothesize are dependent on the programming experience
and ability of the programmer. In this category we will
find such metrics as mean lines of code per function, us-
age of data structures, etc. We will call these metrics
“Programming Structure” metrics,

8 Metrics Considered

>From all the sources mentioned in Section 7, we ex-
tracted a series of potentially useful software metrics.
Even though we describe these metrics as indivisible mea-
surements, in practice we might calculate several values
for them. For example, for metric STY1a we might cal-
culate a median and a standard error. We will examine the
exact format in greater detail in later sections.

Also, unless explicitly stated, all the metrics consider
only the text inside function bodies. We don not examine
include files or type declarations because there is no way



of differentiating between those declarations that are im-
ported from external modules, and those that are native to
the programmer.

8.1 Programming Layout Metrics

� Metric STY1: A vector of metrics indicating inden-
tation style [RN93, pages 68–69]:

� Metric STY1a: Indentation of C statements
within surrounding blocks.

� Metric STY1b: Percentage of open curly brack-
ets (f) that are alone in a line.

� Metric STY1c: Percentage of open curly brack-
ets (f) that are the first character in a line.

� Metric STY1d: Percentage of open curly brack-
ets (f) that are the last character in a line.

� Metric STY1e: Percentage of close curly brack-
ets (g) that are alone in a line.

� Metric STY1f: Percentage of close curly brack-
ets (g) that are the first character on a line.

� Metric STY1g: Percentage of close curly brack-
ets (g) that are the last character in a line.

� Metric STY1h: Indentation of open curly
brackets (f).

� Metric STY1i: Indentation of close curly brack-
ets (f).

� Metric STY2: Indentation of statements starting with
the “else” keyword.

� Metric STY3: In variable declarations, are variable
names indented to a fixed column?

� Metric STY4: What is the separator between the
function names and the parameter lists in function
declarations? Possible values are spaces, carriage
returns or none.

� Metric STY5: What is the separator between the
function return type and the function name in function
declarations? Possible values are spaces or carriage
returns.

� Metric STY6: A vector of metrics that will help iden-
tify the commenting style used by the programmer.
The vector will be composed of:

� Metric STY6a: Use of borders to highlight
comments.

� Metric STY6b: Percentage of lines of code with
inline comments.

� Metric STY6c: Ratio of lines of block style
comments to lines of code.

� Metric STY7: Ratio of white lines to lines of code
[RN93, pages 70–71].

8.2 Programming Style Metrics

� Metric PRO1: Mean program line length (characters
per line) [BM85].

� Metric PRO2: A vector of metrics that will consider
name lengths.

� Metric PRO2a: Mean local variable name
length.

� Metric PRO2b: Mean global variable name
length.

� Metric PRO2c: Mean function name length.
� Metric PRO2d: Mean function parameter

length.
� Metric PRO3: A vector of metrics that will tell us

about the naming conventions chosen by the pro-
grammer. This vector will consist of:

� Metric PRO3a: Some names use the underscore
character.

� Metric PRO3b: Use of temporary variables5

that are named XXX1, XXX2, etc. [KP78],
or “tmp,” “temp,” “tmpXXX” or “tempXXX”
[RN93].

� Metric PRO3c: Percentage of variable names
that start with an uppercase letter.

� Metric PRO3d: Percentage of function names
that start with an uppercase letter.

� Metric PRO4: Global variable count to mean local
variable count ratio. This metric could potentially
tell us something about the programmer’s propensity
to use global variables.

� Metric PRO5: Global variable count to lines of code
ratio. This variation of the previous metric might
give us a better metric for measuring the frequency
of usage of global variables.

� Metric PRO6: Use of conditional compilation.
� Metric PRO7: Preference of either “while,” “for” or

“do” loops.
� Metric PRO8: Does the programmer use comments

that are nearly an echo of the code [KP78, page 143]
[RN93, page 82]?

5It can be argued that all local variables are temporary and no global
variable is temporary. However, in this paper we will follow the con-
vention that a variable is temporary if it there is no direct association
between its name and its meaning.



� Metric PRO9: Type of function parameter declara-
tion. Does the user use the standard format or the
ANSI C format?

8.3 Programming Structure Metrics

� Metric PSM1: Percentage of “int” function defini-
tions.

� Metric PSM2: Percentage of “void” function defini-
tions.

� Metric PSM3: Program uses a debugging symbol
or keyword6. We would specifically be looking at
identifiers or constants containing the words “debug”
or “dbg” [RN93, pages38–53].

� Metric PSM4: The assert macro is used.
� Metric PSM5: Lines of code per function [KP78,

BM85].
� Metric PSM6: Variable count to lines of code ra-

tio. This metric could identify those programmers
who tend to avoid reusing variables, creating new
variables for each loop control variable, etc.

� Metric PSM7: Percentage of global variables that are
declared static.

� Metric PSM8: The ratio of decision count to lines
of code. To simplify the computation of this metric,
we have chosen to modify the definition of decision
count as given in [SCS86]. We do not count each
logical operator inside a test as a separate decision.
Rather, each instance of the if, for, while, do, case
statements and the ? operator increases our decision
count by one.

� Metric PSM9: Is the goto keyword used? Soft-
ware designers and programmers still rely on these
[BM85].

� Metric PSM10: Simple software complexity met-
rics offer little information that might be application
independent [OC89]. The metrics that we could con-
sider are: cyclomatic complexity number, program
volume, complexity of data structures used, mean
live variables per statement, and mean variable span
[SCS86].

� Metric PSM11: Error detection after system calls
that rarely fail. Some programmers tend to ignore the
error return values of system calls that are considered
reliable [GS92, page 164]. Thus, a metric can be

6Debugging is difficult. Many non standard techniques have been
developed [RN93], and we cannot hope to identify all forms of debugging
symbols. However, there are some techniques that are widely used and
we will concentrate on these.

obtained out of the percentage of reliable system calls
whose error codes are ignored by the programmer.
Also, some programmers tend to overlook the error
codes returned by system calls that should never have
them ignored (like “malloc”). We can define this
metric as a vector of the following items:

� Metric PSM11a: Are error results from memory
related system calls ignored? Specifically, we
would be looking at malloc(), calloc(), realloc(),
memalign(), valloc(), alloca() and free().

� Metric PSM11b: Are error results from I/O rou-
tines ignored? Specifically, we would be look-
ing at open(), close(), dup(), lseek(), read(),
write(), fopen(), fclose(), fwrite(), fread(),
fseek(), getc(), putc(), gets(), puts(), printf() and
scanf().

� Metric PSM11c: Are error results from other
system calls ignored? We would be looking at
chdir(), mkdir(), unlink(), socket(), etc.

� Metric PSM12: Does the programmer rely on the
internal representation of data objects? This metric
would check for programmers relying on the size and
byte order of integers, the size of floats, etc.

� Metric PSM13: Do functions do “nothing” success-
fully? Kernighan and Plauger in [KP78, pages 111–
114] and Jay Ranade and Alan Nash in [RN93, page
32] emphasize the need to make sure that there are no
unexpected side effects in functions when these must
“do nothing.” In this context, functions that “do noth-
ing” successfully are functions that correctly test for
boundary conditions on their input parameters. We
must note that it is an undecidable problem to deter-
mine the correctness of an arbitrary function[HU79].

� Metric PSM14: Do comments and code agree?
Kernighan and Plauger write in [KP78] that “A com-
ment is of zero (or negative) value if it is wrong”.
Ranade and Nash [RN93, page 89] devote a rule to
the truth of every comment. Even if the comments
were initially accurate, it is possible that during the
maintenance cycle of a program they became inac-
curate. Because we cannot determine the stage of
development where the incorrect comment was in-
troduced, we will consider all incorrect comments7

in this metric.
� Metric PSM15: More than any other type of software

metric, those that deal with the development phase of

7Deciding that a comment is wrong can only be done manually by
careful examination of the source code. Because it involves the semantic
analysis of English sentences, it is unlikely that this process will be
automated soon.



a project would help to identify the authorship of a
program. Consider, for example, whether comments
are placed before, during or after the development of
a program, the choice of editor, the choice of com-
piler, the usage of revision control systems, the usage
of development tools, etc. Unfortunately, this in-
formation is not readily available. Test programs,
intermediate versions, debugging code and the alike
are discarded after the final version of the program is
finished.

� Metric PSM16: Quality of software. We could use
software metrics that deal with the quality of software
to assess the level of experience of the programmer.
Typically, software quality metrics are related to soft-
ware development standards and try to measure the
reliability and robustness of software.
These metrics will not be useful. In the worst case,
we would be measuring the care that the programmer
has taken to develop a piece of code as well as the
level of expertise of the programmer. Furthermore,
it is possible for an experienced programmer to get
low software quality scores and for a beginner to get
high scores (if he followed a textbook algorithm for
his program).

A software analyzer built for the lcc C compiler front-
end developed at Princeton [Han91] was used to generate
most of the raw data, including all of the programming
structure metrics. Once the calculation of these metrics
had been performed, a series of Perl programs were used
to collect the metrics that depended on the information
that was discarded by the C preprocessor. Indentation,
commenting style and line lengths are examples of the
measurements collected by these scripts.

9 Experimental Stages

The experimental data for this paper was gathered in
three distinct stages: a preliminary stage helped us de-
termine the proper methods for calculating the metrics,
eliminated those metrics that were clearly inappropriate
for our purposes, and coexisted with the tool development
phase[Krs94]; a pilot experiment was performed with a
small number of programmers, each of whom wrote three
short and simple programs [Krs94]. To determine the ef-
fect of problem domains on our analysis, the programs
were oriented to the three areas where we thought we
could have the greater variations in style: computation-
ally intensive programs, I/O intensive programs and data

structure intensive programs8; once the preliminary ex-
periment showed that the desired set of metrics could be
analyzed, we designed and executed a larger, more formal
experiment in which to test our prototype.

9.1 Experiment

For this experiment, a series of programs were collected
from a total of 29 students, staff and faculty members at
Purdue University. The distribution for the programs are
shown in table 1.

Table 1: Distribution of Programs

Group Identification Programs

Students 1(Projects for the
Fall 1993 term) 57
Students 2 (Programs developed for
other terms) 6
Pilot 1 (Programs developed by
students for the pilot experiment) 18
Pilot 2 (Programs developed by
experienced programmers for the
pilot experiment) 6
Faculty (Miscellaneous programs
by faculty members) 7
TOTAL 88

We included programs from a wide variety of program-
ming styles and for different problem domains. Roughly
one third of the student programs were programming as-
signments from a graduate level networking course, one
third of the programs were programming assignments
from a graduate level compilers course and one third of the
programs were from miscellaneous graduate level courses,
including data bases, numerical analysis and operating
systems. Of the programs submitted by the faculty mem-
bers, half are oriented towards numerical analysis and half
oriented towards compiler construction and software en-
gineering.

9.2 Statistical Model Used for the Analysis

There are two statistical methods that could be used to
analyze the metrics gathered. Cluster analysis, as used
by Oman and Cook in [OC89] can only be used if we

8A detailed description of the programs can be found in [Krs94]



discretize the values for our metrics. Unfortunately, it is
difficult to find ranges for each of the metrics that could
be used for any group of programmers without loss of
accuracy.

The second statistical analysis method we can use, and
the one chosen for our analysis, is discriminant analysis.
This method, described in [SAS, JW88] is a multivari-
ate technique concerned with separating observations and
with allocating new observations into previously defined
groups.

Originally, for the final experiment we wanted to keep
those metrics that showed little variation between pro-
grams (for a specific programmer) and those metrics that
showed large variations among programmers. Unfortu-
nately, analysis of the metrics collected shows that these
two criteria are not necessarily correlated.

Initially, we calculated the standard error by program-
mer for every metric, and eliminated those that showed
large variations because they identify those style charac-
teristics where the programmer is inconsistent.

Surprisingly, most of the metrics that showed large vari-
ations among programmers were eliminated as well. The
performance of our statistical analysis with the remaining
metrics was discouraging, with only twenty percent of the
programs being classified correctly.

The step discrimination tool provided by the SAS pro-
gram [SAS] should theoretically be capable of eliminating
bad metrics from the statistical base. Unfortunately, this
tool was not helpful because it failed to eliminate any of
the metrics from our set.

To resolve this issue, we decided to build a tool that
would help us visualize the metrics collected. For each
continuous metric (i.e. real valued metric) the tool dis-
played two graphs that showed the variation of the metric
within programs for each programmer and the distribution
of values for each metric for all programmers.

For each discrete metric (i.e. boolean metrics and set
metrics), the tool produced a graph that showed the con-
sistency of each programmer for each metric. In these
figures, vertical lines represent a programmer “jumping”
from one value to the next in two consecutive programs.
Hence, a good discrete metric is one that shows variations
in values and no “jumps.”

With this analysis, we chose a small subset of our met-
rics for the final statistical analysis9.

9Specifically, metrics PRO1M, mean for PRO2a, mean for PRO2b,
mean for PRO2c, PRO3d, PRO5, PSM1, PSM6, mean for STY1a,
STY1b, STY1c, STY1d, STY1e, STY1f, mean for STY1i, mean for

9.3 Experiment Results

The success rate of our experiment is 73%. This means that
of all the programs analyzed, 73% were correctly assigned
to their original programmers. Individual percentages of
correctly classified programs are shown in table 2.

Table 2: Classification by Programmer

% of programs Number of

% correctly classified programmers

100 % 17
77 % 3
75 % 1
71 % 1
50 % 1
33 % 2
25 % 1
20 % 1
0 % 2

When colleagues were shown this table for the first
time, the first question asked was: “Are all the program-
mers that the system identified correctly 100% of the time
related? Are the backgrounds of these programmers sim-
ilar?” Initially we were surprised to see that the programs
for seasoned programmers, a faculty member, and gradu-
ate students of Computer Science were all mixed in this
category. Also, we notice that:

1. The programs for the faculty member (three programs
averaging 300 lines of code each) were developed
over several years and address different problem do-
mains.

2. Three of the six programmers who helped with the
development of the programs for the pilot study were
correctly classified 100% of the time. The programs
for each of these programmers addressed different
problem domains.

3. The programmers who were correctly classified have
different backgrounds.

For the programmers who were classified less than 50%
of the time, we looked at their code to find out why we
failed to classify them (two programmers were never clas-
sified correctly). We were surprised to find that they had
varied their programming style considerably from pro-
gram to program in a period of only two months.

STY2, STY6b, STY6c, STY7, PRO8, PSM3, STY4 and STY5.



Other misclassified programmers showed a consistent
programming style. This fact is a clear indication that
the metrics chosen for our experiment were not compre-
hensive enough to distinguish among them. But their
programs are far from identical as subsequent inspection
of their code revealed. For one of the programmers who
was classified correctly 0% of the time, for example, we
could find several characteristics that remained consistent
throughout.

Our experiment also helped us predict the performance
of the metrics when a program not included in the original
database is considered. For each program, we removed
it from the database and later told SAS to classify it. As
expected, the results average 73 %. However, this stage
of our experiment shed some light as to the consistency
of the misclassification. Mainly, some programmers are
misclassified consistently. Programer 18 was misclassi-
fied consistently as programmer 12, programmer 19 as
programmer 17, programmer 11 as programmer 18, and
programmer 26 as programmer 9. We can conclude that
even though the metrics are not good enough to classify
these programmers correctly, the misclassification is not
random. A more refined set of metrics could help distin-
guish among these programmers.

The statistical analysis tools used provide little support
for ranking the performance of individual metrics. The
removal of any one metric from the analysis can have
negative or positive effects, independent of the quality of
the metric.

10 Conclusions

The experiments we have performed for this paper sup-
port the theory that it is possible to find a set of metrics
that can be used to classify programmers correctly. Close
visual examination of the source code provided by all
the programmers involved in our experiment reveals that
programmers tend to show repeating patterns in their pro-
grams.

Clearly it is possible to identify ownership of a program
by examining some finite set of metrics. As expected,
programmers are skillful with a limited set of constructs,
mainly those that are well known to them and that allow
them to write programs faster and more reliably. It would
be unrealistic to assume that any programmer can develop
programs efficiently and correctly using an unfamiliar pro-
gramming style. This does not only apply to the structure
of the programs, but also to the look and feel of it; such

metrics as, for example, average blank lines over lines of
code can indeed remain surprisingly constant. Program-
mers organize information on the screen such that logically
independent portions of the code can be easily recognized.

Even though we are satisfied with our choice of metrics,
the results presented in this paper clearly show that we will
not be able to correctly classify all possible programmers
successfully with this set of metrics. Experience and logic
tell us that a small and fixed set of metrics are not suffi-
cient to detect ownership of every program and for every
programmer.

Our results suggest that using weighted combinations
of metrics might produce better results. We also suspect
that using Bayesian measures for some combinations of
metrics might also produce better results. This would
require a more involved study to determine appropriate
prior probabilities and dependencies.

By no means do we claim that the set of metrics we
examined is the only one that might yield stable mea-
surements. During the data collection and analysis of the
experiment, we noted that the following metrics might be
of considerable use in future experiments:

1. Use of revision control system headers. We were sur-
prised to see that a considerable portion of the pro-
grammers examined used the automatic identification
and log features of the RCS Revision Control Sys-
tem. As an added bonus, such identification strings
will provide the login name of the programmer in
question10.

2. Another metric that could have been used success-
fully is the use of literals in code versus the use of
global constants.

3. One programmer’s idea of debugging statements was
commenting out the print statements. This was done
consistently and it might provide another useful met-
ric.

We do not expect that the metrics calculated for any
given programmer would remain an accurate tag for a
programmer for a long time, even though in our exper-
iment we have correctly identified the only programmer
who provided code developed over a number of years.
Further research must be performed to examine the effect
that time and experience has on the metrics examined on
this document.

It would be logical to conclude that for the authorship

10It is easy to alter the user name in the RCS automatic identification
feature, and as such, excessive confidence must not be placed on its
accuracy



analysis techniques to work, the metrics would have to
be gathered continually over time. Compilers and oper-
ating systems would have to be enhanced and significant
research would have to be done in the development of
operating systems to enforce the use of these metrics.

The results of this paper support the conclusion that
within a closed environment, and for a specific set of pro-
grammers, it is possible to identify a particular program-
mer and the probability of finding two programmers that
share exactly those same characteristics should be small.
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