
INTRODUCTION

TOLKIEN (TOoLKI t for gENetics-based applications) is a C++ class library named in memory of J. R. R. Tolkien. The

target users are those who involved in researches in Genetic Algorithms (GA) and classifier systems with working

knowledge in C++. TOLKIEN is developed as a prototyping tool that enables genetics-based applications to be constructed

easily.

TOLKIEN contains a lot of useful extensions to the generic genetic algorithm and classifier system architecture. Examples

include :

l chromosomes of arbitrary types

l Gray code encoding and decoding;

l multi-point and uniform crossover;

l diploidy and dominance;

l various selection schemes such as tournament selection and linear ranking;

l linear fitness scaling and sigma truncation;

WHAT’S NEW IN THIS RELEASE ?

This version of TOLKIEN makes extensive use of the Standard Template Library (STL), which will become part of the

standard library of the C++ language.

☞ This alpha release does not contain the classifier system classes and the code has only been tested using g++

2.7.2 a Linux machine.

THE TOLKIEN GENETIC ALGORITHM

This section describes the characteristics of the genetic algorithm implemented by TOLKIEN. Note that this section is not

a tutorial on genetic algorithms.

(evaluation)

ScalingScheme

Crossover

SelectionScheme

parents

offsprings

scaled individuals
Population

Figure 1 The GA cycle.

Class GeneticAlgorithm contains the execution cycle of the genetic algorithm (Figure 1) :

1. Create a temporary collection called newInds to store the new offsprings.

2. While more offsprings are required

select two parents from the current population (class SelectionScheme).

create two offspring by crossing over the parents (class Crossover).

perform mutation on the offsprings

add the offsprings to newInds

end-while

3. Replace individuals in the current population by individuals in newInds (class Population).

4. Evaluate the raw fitness (objective value) of new offsprings, if required the fitness of the individuals not replaced

are also evaluated.

5. Perform fitness scaling if necessary (class ScalingScheme).

Individuals

Class TGAObj is defined for objects that can be operated on by a genetic algorithm. Derived classes must define the

clone (deep copy) and mutation functions :

class TGAObj {
public:

.

.
 virtual TGAObj* clone() const = 0; // deep copy
 virtual void mutate(double mutation_rate) = 0;

private :
 double flFitness;
 double flObjValue;
};

Two derived classes of TGAObj provided by TOLKIEN are BinHaploid and BinDiploid , the binary data structures

used by traditional genetic algorithms. The class diagram is shown in Figure 2. Chromosomes of arbitrary genotype is

created by instantiatng the template class Haploid .

TG AO b j
fitness : double
objValue : double

clone()
mutate()
randomize()
printO n()

B inDip loid
hmlg1 : TritString
hmlg2 : TritString

B inHap loid
bits : BitString
graycodeFlag : bool

B in Ind ividual

asBitString()
asDouble()
asLong()
asLong()
asDouble()
oddPtCrossover()
evenPtCrossover()
uniformCrossover()
isG rayCode()
hammingDistance()

G ene

Hap lo id
genes : vector<Gene>

orderCrossover()
oddPtCrossover()
evenPtCrossover()
uniformCrossover()

Figure 2 The TGAObj class hierarchy.

Population

Population classes differ from each other by the way new individuals replace old ones. When the generation gap is one

(i.e. the whole population is replaced in each generation) all population classes behave in the same manner.

The population classes provided by TOLKIEN are :

SimplePopulation - individuals are replaced in a random fashion.

ElitePopulation - the worst individuals in the population are replaced.

CrowdingPopulation - use De Jong’s crowding scheme to replace individuals.

In this version class the default collection class to storage individuals is the STL vector class. Each of the classes

Population , SelectionScheme , ScalingScheme and GeneticAlgorithm is a template class with a default argument

of vector<TGAObj*>. Any random accessible collection class can be used instead of class vector . The class hierarchy

of population classes is shown in Figure 3.

C o lle c tio n

Po pu la tio nB ase
ind ividua ls : C ollec tio n
_o bjS ta t : S a m p leS ta tis tic
_fi tS tat : S am ple S tatistic

po pS ize ()
eva luate ()
ad d()
prin tO n()
rando m ize ()
m utate()
evo lve ()
s ta tis tic s ()
rep lac e()

P henotype F unc ,
TD istanc e, C olle ction

Crow ding Po pula tio n
uC rowd ing F a cto r : lo ng
uC rowd ing S ubP op : long
dis t : TD istance

s elec t()

P henotype F unc

Po pu la tio n
func : P henoT yp eF unc

S imp lePo pu la tio n ElitePo pu la tio n

Figure 3 The Population class hierarchy.

Objective function

The objective function is a function object (a function encapsulated by a class) returning the raw fitness of an individual

:

class F1
{
public:
 double operator()(const TGAObj* ind)
 {
 .
 .
 .
 }

};

As shown in Figure 3, a function object is one of the parameters of the Population template class.

Each instance of class TGAObj contains two member variables, flObjValue and flFitness , which store respectively

the objective value and fitness value. The variable flObjValue stores the value returned by the objective function,

and flFitness is the scaled value of flObjValue (if scaling is required). It is the value flFitness used for

selection for crossover.

Selection scheme

The selection methods provided by TOLKIEN are : roulette-wheel selection (with and without replacement), tournament

selection, linear ranking and stochastic universal sampling.

Scaling scheme

In some situations the raw objective values cannot be used for selection, cases include :

l the range of the objective function includes negative values

l function minimization

l the selective pressure is not high enough

TOLKIEN provides three scaling schemes : linear scaling, sigma truncating, power scaling.

FUNCTION OPTIMIZATIONS USING TOLKIEN

The task of this sample application is to optimize the following function HMB, which is Himmelblau’s function modified

for maximization :

HMB x y x y x y(,) () ()= - + - - + -200 11 72 2 2 2

The parameters of HMB are represented by a binary chromosome of length thirty - the first fifteen bits are used to

represent the value for x, the rest fifteen bits that for y. Each of the two parameters is in the range [-6,6].

The fitness function is defined as follows :

ParameterMap HMBmap(15,-6,6); // map a fifteen bits binary value to

 // the range [-6,6]

class HMB

{

public:

 double operator()(const TGAObj * ind)

 {

double x = HMBmap((const BinHaploid *) ind, 0);

double y = HMBmap((const BinHaploid *) ind, 1);

double a = x * x + y - 11;

double b = x + y * y - 7;

return 200 - a * a - b * b;

 }

};

The source code for the program is as follows :

1 void main()
2 {
3 float flMRate = 0.03; // mutation rate
4 float flXRate = 1; // crossover rate
5 float flGap = 0.5; // generation gap
6 unsigned uPopSize = 50; // population size
7 unsigned uGen = 100; // number of generations to perform
8 //
9 // the GA used takes the following parameters
10 //
11 // roulette wheel selection scheme
12 // single-point crossover with crossover rate = 1.0
13 // mutation rate = 0.03
14 // population size = 50
15 // generation gap = 0.5
16 //
17 // offsprings are inserted into the population
18 // in a random manner

19 //
20 // creates the initial population of 50 instances
21 // of class HMBind
22 // the simplest population type (class Population) are
23 // used in which old offsprings are replaced by new
24 // offsprings in a random manner
25 //
26 int i;
27 PopulationBase<>* pPop = new SimplePopulation<HMB>();
28 for (i=0; i<uPopSize; i++)
29 pPop->add(new BinHaploid(30,true));
30 SelectionScheme<>* pSelect = new TournSelect<>();
31 Crossover* pXover = new MultiPtCrossover(2, flXRate);
32 GeneticAlgorithm<> ga(pPop, pSelect, pXover,
33 flMRate, flGap);

34 while (ga.trials() < uGen)
35 ga.evolve();

36 cout << “Selection performed : “ << ga.numSelected() << endl;
37 cout << “Crossover performed : “ << ga.numCrossed() << endl;
38 cout << “Best Individual : “ ;
39 ga.bestInd()->printOn(cout);
40 cout << endl;
41 cout << “Worst Individual : “ ;
42 ga.worstInd()->printOn(cout);
43 cout << endl;
44 cout << “Online performance : “ << ga.objOnLine() << endl;
45 cout << “Offline performance : “ << ga.objOffLine() << endl;
46 }

As show in lines 27-33, the GeneticAlgorithm object can be constructed using various combinations of population

structures, selection schemes, and crossover schemes. For example, these lines can be replaced by the follow code

segment :

 PopulationBase<>* pPop = new ElitePopulation <HMB>();
 for (i=0; i<uPopSize; i++)
 pPop->add(new BinHaploid(30,true));
 SelectionScheme<>* pSelect = new RW_Select <>();
 Crossover* pXover = new UniformPtCrossover (2, flXRate);
 GeneticAlgorithm<> ga(pPop, pSelect, pXover,
 flMRate, flGap);

In addition, it is also possible to have a mixed population of binary haploids and binary diploids, You can replace line

28-29 with the follow code :

for (i=0; i<uPopSize; i++)
 if (i % 2)
 pPop->add(new BinHaploid(30,true));
 else
 pPop->add(new BinDiploid(30,true));

